\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kalb-Ramond field} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{mathematical_model_from_formal_physical_input}{Mathematical model from (formal) physical input}\dotfill \pageref*{mathematical_model_from_formal_physical_input} \linebreak \noindent\hyperlink{over_dbranes}{Over D-branes}\dotfill \pageref*{over_dbranes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Kalb-Ramond field} or \textbf{B-field} is the [[higher U(1)-gauge field]] that generalizes the [[electromagnetic field]] from point [[particles]] to [[string theory|strings]]. Its dual incarnation in [[KK-compactifications]] of [[heterotic string theory]] to 4d is a candidate for the hypothetical [[axion]] field (\hyperlink{SvrcekWitten06}{Svrcek-Witten 06, p. 15}). Recall that the [[electromagnetic field]] is modeled as a [[cocycle]] in degree 2 [[ordinary differential cohomology]] and that this mathematical model is fixed by the fact that charged particles that trace out 1-dimensional trajectories couple to the electromagnetic field by an [[action functional]] that sends each trajectory to the holonomy of a $U(1)$-[[connection on a bundle|connection]] on it. When replacing particles with 1-dimensional trajectories by [[string theory|strings]] with 2-dimensional trajectories, one accordingly expects that they may couple to a higher degree background field given by a degree 3 [[ordinary differential cohomology]] cocycle. In [[string theory]] this situation arises and the corresponding background field appears, where it is called the \emph{Kalb-Ramond field} . Often it is also simply called the \textbf{$B$-field} , after the standard symbol used for the 2-forms $(B_i \in \Omega^2(U_i))$ on patches $U_i$ of a [[cover]] of spacetime when the differential cocycle is expressed in a [[Cech cohomology]] realization of [[Deligne cohomology]]. This is the analog of the local 1-forms $(A_i \in \Omega^1(U_i))$ in a Cech cocycle presentation of a [[line bundle]] with [[connection on a bundle|connection]] encoding the [[electromagnetic field]]. The [[field strength]] of the Kalb-Ramond field is a [[differential forms|3-form]] $H \in \Omega$. On each patch $U_i$ it is given by \begin{displaymath} H|_{U_i} = d B_i \,. \end{displaymath} And just as a degree 2 [[Deligne cohomology|Deligne cocycle]] is equivalently encoded in a $U(1)$-[[principal bundle]] [[connection on a bundle|with connection]], the degree 3 differential cocycle is equivalently encoded in \begin{itemize}% \item a degree 3 [[Deligne cohomology|Deligne cocycle]]; \item a $\mathbf{B}U(1)$-[[principal 2-bundle]] with connection; \item a $U(1)$-[[bundle gerbe]] with connection. \end{itemize} The study of [[bundle gerbe]]s was largely motivated and driven by the desire to understand the Kalb-Ramond field. The next higher degree analog of the electromagnetic field is the [[supergravity C-field]]. \hypertarget{mathematical_model_from_formal_physical_input}{}\subsection*{{Mathematical model from (formal) physical input}}\label{mathematical_model_from_formal_physical_input} The derivation of the fact that the Kalb-Ramond field that is locally given by a 2-form is globally really a degree 3 cocycle in the [[Deligne cohomology]] model for [[ordinary differential cohomology]] proceeds in in entire analogy with the corresponding discussion of the [[electromagnetic field]]: \begin{itemize}% \item \textbf{classical background} The [[field strength]] 3-form $H \in \Omega^3(X)$ is required to be closed, $d H_3 = 0$. \item \textbf{quantum coupling} The gauge interaction with the quantum string is required to yield a well-defined surface holonomy in $U(1)$ from locally integrating the 2-forms $B_i \in \Omega^2(U_2)$ with $d B_i = H|_{U_i}$ over its 2-dimensional trajectory. \begin{displaymath} hol(\Sigma) = \prod_{f} \exp(i \int_f \Sigma^* B_{\rho(f)}) \prod_{e \subset f} \exp(i \int_{e} \Sigma^* A_{\rho(f) \rho(e)}) \prod_{v \subset e \subset f} \exp(i \lambda_{\rho(f) \rho(e) \rho(v)}) \,. \end{displaymath} That this is well defined requires that \begin{displaymath} \lambda_{i j k} - \lambda_{i j l} + \lambda_{i k l} - \lambda_{j k l} = 0 \;mod \, 2\pi \end{displaymath} which says that $(B_i, A_{i j}, \lambda_{i j k})$ is indeed a degree 3 [[Deligne cohomology|Deligne cocycle]]. \end{itemize} \hypertarget{over_dbranes}{}\subsection*{{Over D-branes}}\label{over_dbranes} The restriction of the Kalb-Ramond field in the 10-dimensional [[spacetime]] to a [[D-brane]] is a twist (as in [[twisted cohomology]]) of the [[gauge field]] on the D-brane: its 3-class is [[magnetic charge]] for the [[electromagnetic field]]/[[Yang-Mills field]] on the D-brane. See also [[Freed-Witten anomaly cancellation]] or the discussion in (\hyperlink{Moore}{Moore}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[discrete torsion]] \end{itemize} [[!include table of branes]] \hypertarget{References}{}\subsection*{{References}}\label{References} The name goes back to the article \begin{itemize}% \item M. Kalb and [[Pierre Ramond]], \emph{Classical direct interstring action, Phys. Rev. D. 9 (1974), 2273--2284} \end{itemize} The interpretation as a 4d [[axion]] is discussed in \begin{itemize}% \item Peter Svrcek, [[Edward Witten]], \emph{Axions In String Theory}, JHEP 0606:051,2006 (\href{http://arxiv.org/abs/hep-th/0605206}{arXiv:hep-th/0605206}) \end{itemize} The earliest reference where the gauge term in the standard string [[action functional]] is identified with the surface holonomy of a 3-cocycle in [[Deligne cohomology]] seems to be \begin{itemize}% \item [[Krzysztof Gawedzki]], \emph{Topological Actions in two-dimensional Quantum Field Theories}, Cargese 1987 proceedings, \emph{Nonperturbative quantum field theory} (1986) (\href{http://inspirehep.net/record/257658?ln=de}{web}) \end{itemize} The later article \begin{itemize}% \item [[Dan Freed]], [[Edward Witten]], \emph{Anomalies in String Theory with D-Branes}, Asian J. Math.3:819,1999 (\href{http://arxiv.org/abs/hep-th/9907189}{arXiv:hep-th/9907189}) \end{itemize} argues that the string $B$-field is a cocycle in [[Čech cohomology]]--[[Deligne cohomology|Deligne]] cohomology using [[quantum anomaly]]-cancellation arguments. This is expanded on in \begin{itemize}% \item [[Alan Carey]], Stuart Johnson, [[Michael Murray]], \emph{Holonomy on D-Branes}, Journal of Geometry and Physics Volume 52, Issue 2, October 2004, Pages 186-216 (\href{http://arxiv.org/abs/hep-th/0204199}{arXiv:hep-th/0204199}, \href{https://doi.org/10.1016/j.geomphys.2004.02.008}{arXiv:10.1016/j.geomphys.2004.02.008}) \end{itemize} A more refined discussion of the [[differential cohomology]] of the Kalb-Ramond field and the fields that it interacts with is in \begin{itemize}% \item [[Dan Freed]], \emph{Dirac Charge Quantization and Generalized Differential Cohomology} (\href{http://arxiv.org/abs/hep-th/0011220}{arXiv:hep-th/0011220}) \end{itemize} In fact, in full generality the Kalb-Ramond field on an [[orientifold]] background is not a plain gerbe, but a \emph{Jandl gerbe} , a connection on a nonabelian $AUT(U(1))$-[[principal 2-bundle]]s for the [[automorphism 2-group]] $AUT(U)(1))$ of $U(1)$: for the bosonic string this is discussed in \begin{itemize}% \item [[Urs Schreiber]], [[Christoph Schweigert]], [[Konrad Waldorf]], \emph{Unoriented WZW Models and Holonomy of Bundle Gerbes} (\href{http://arxiv.org/abs/hep-th/0512283}{arXiv:hep-th/0512283}) \end{itemize} and for the refinement to the [[superstring]] in \begin{itemize}% \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Orientifold Precis} in [[Hisham Sati]], [[Urs Schreiber]] (eds.), \emph{[[schreiber:Mathematical Foundations of Quantum Field and Perturbative String Theory]]} Proceedings of Symposia in Pure Mathematics volume 83 AMS (2011) (\href{http://arxiv.org/abs/0906.0795}{arXiv:0906.0795}) \item [[Jacques Distler]], [[Dan Freed]], [[Greg Moore]], \emph{Spin structures and superstrings}, Surveys in Differential Geometry, Volume 15 (2010) (\href{http://arxiv.org/abs/1007.4581}{arXiv:1007.4581}, \href{http://dx.doi.org/10.4310/SDG.2010.v15.n1.a4}{doi:10.4310/SDG.2010.v15.n1.a4}) See at \emph{[[orientifold]]} for more on this. \end{itemize} The role of the KR field in [[twisted K-theory]] is discussed a bit also in \begin{itemize}% \item [[Greg Moore]], \emph{K-theory from a physical perspective} (\href{http://arxiv.org/abs/hep-th/0304018}{arXiv:hep-th/0304018}) \end{itemize} [[!redirects Kalb--Ramond field]] [[!redirects Kalb–Ramond field]] [[!redirects B-field]] [[!redirects B-fields]] [[!redirects B2-field]] \end{document}