\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kaluza-Klein monopole} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_supergravity}{In supergravity}\dotfill \pageref*{in_supergravity} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{NearHorizonGeometry}{Near-horizon geometry}\dotfill \pageref*{NearHorizonGeometry} \linebreak \noindent\hyperlink{RelationToTheD6Brane}{Relation to the D6-brane in type IIA string theory}\dotfill \pageref*{RelationToTheD6Brane} \linebreak \noindent\hyperlink{relation_to_the_d7brane_in_type_iib_string_theoryftheory}{Relation to the D7-brane in type IIB string theory/F-theory}\dotfill \pageref*{relation_to_the_d7brane_in_type_iib_string_theoryftheory} \linebreak \noindent\hyperlink{other_brane_charges_}{Other Brane charges (?)}\dotfill \pageref*{other_brane_charges_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{in_5d_gravity}{In 5d gravity}\dotfill \pageref*{in_5d_gravity} \linebreak \noindent\hyperlink{in_11d_supergravity}{In 11d supergravity}\dotfill \pageref*{in_11d_supergravity} \linebreak \noindent\hyperlink{original_articles}{Original articles}\dotfill \pageref*{original_articles} \linebreak \noindent\hyperlink{review}{Review}\dotfill \pageref*{review} \linebreak \noindent\hyperlink{relation_to_black_holes}{Relation to black holes}\dotfill \pageref*{relation_to_black_holes} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} In the context of [[Kaluza-Klein theory]] where an [[electromagnetic field]] in [[Einstein-Maxwell theory]] in [[dimension]] $d$ is modeled by a configuration of pure Einstein [[gravity]] in dimension $d+1$, a \emph{Kaluza-Klein monopole} is a configuration of gravity in dimension $d+1$ which in dimension $d$ looks like a magnetic [[monopole]] (\hyperlink{Sorkin83}{Sorkin 83}, \hyperlink{GrossPerry83}{Gross-Perry 83}). \hypertarget{in_supergravity}{}\subsubsection*{{In supergravity}}\label{in_supergravity} This situation is of particular interest in the reduction of [[11-dimensional supergravity]] (or [[M-theory]], where one also speaks of the [[M-brane|MK6-brane]]) where the Kaluza-Klein magnetic monopole charge is interpreted as [[D6-brane]] charge under [[duality between M-theory and type IIA string theory]]. The \emph{Kaluza-Klein monopole} (\hyperlink{HanKoh85}{Han-Koh 85}) is one type of solution of the [[equations of motion]] of [[11-dimensional supergravity]]. It is given by the [[product]] $N_4\times \mathbb{R}^{11-5,1}$ of Euclidean [[Taub-NUT spacetime]] with [[Minkowski spacetime]]. Upon [[Kaluza-Klein compactification]] this looks like a [[monopole]], whence the name. (For discussion as an [[ADE-singularity]] see \hyperlink{IMSY98}{IMSY 98, section 9}, \hyperlink{Asano00}{Asano 00, section 3}.) Upon [[KK-compactification]] on a 6-dimensional [[fiber]], with the 11d KK-monopole / [[D6-brane]] completely [[wrapped brane|wrapping]] the fiber, the KK-monopole in [[11d supergravity]] becomes the KK-monopole in [[5d supergravity]]. Further compactifying on a circle leads to a [[black hole]] in 4d, incarnated as a D0/D6 bound state (e.g. \hyperlink{Nelson93}{Nelson 93}). [[!include KK-monopole geometries -- table]] \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} (For the moment the following is all about the KK-monopoles in [[11d supergravity]]/[[M-theory]].) \hypertarget{NearHorizonGeometry}{}\subsubsection*{{Near-horizon geometry}}\label{NearHorizonGeometry} We discuss the [[near horizon geometry]] of coincident MK6-branes. The [[metric tensor]] of $N$ coincident [[KK-monopoles]] in [[11-dimensional supergravity]] in the limit that $\ell_{th} \coloneqq N \ell_P \to 0$ is \begin{equation} g_{MK6} \;=\; g_{\mathbb{R}^{6,1}} + (d y)^2 + y^2 \big( (d \theta)^2 + (\sin \theta)^2 (d \varphi)^2 + (\cos \theta)^2 (d \phi)^2 \big) \label{SmallNMK6}\end{equation} subject to the identification \begin{equation} (\varphi, \phi) \;\sim\; (\varphi, \phi) + (2\pi/N ,2\pi/N) \,. \label{OrbifoldIdentificationForKKMonopole}\end{equation} This is equation (47) in \hyperlink{IMSY98}{IMSY 98}, which applies subject to the condition \begin{displaymath} U/\left(\frac{N}{g^{2/3}_{YM}}\right) \;=\; U/\left(\frac{N}{(2\pi)^{4/3} \ell_P}\right) \;\gg\; 1 \end{displaymath} from a few lines above. Inserting this condition into the definition $y^2 \coloneqq 2 N \ell^3_P U$ right above (47) shows that \begin{displaymath} \begin{aligned} y^2 & = 2 N \ell^3_P U \\ & = 2(2\pi)^{-4/3} N^2 \ell_P^2 \; \underset{ \gg 1 }{ \underbrace{ \left(U/\left(\frac{N}{ (2 \pi)^{4/3} \ell_P}\right)\right) }} \end{aligned} \end{displaymath} hence that the distance $y$ from the locus of the MK6-brane is large in units of \begin{displaymath} \ell_{th} \;=\; \sqrt{2} (2\pi)^{-2/3} N \ell_P \,. \end{displaymath} The identification \eqref{OrbifoldIdentificationForKKMonopole} means that this is the [[orbifold]] [[metric cone]] $\mathbb{R}^{6,1} \times \left( \mathbb{R}^4/(\mathbb{Z}_N)\right)$, hence an [[ADE classification| A-type]] [[ADE-singularity]]. To make this more explicit, introduce the complex coordinates \begin{displaymath} v \;\coloneqq\; y \, e^{i \varphi} \sin \theta \;\;\; w \;\coloneqq\; y \, e^{i \phi} \cos \theta \end{displaymath} on $\mathbb{R}^4 \simeq \mathbb{C}^2$, in terms of which \eqref{SmallNMK6} becomes \begin{displaymath} g_{MK6} \;\coloneqq\; d v d \overline v + d w d \overline w \end{displaymath} and which exhibit the identification \eqref{OrbifoldIdentificationForKKMonopole} as indeed that of the [[ADE classification|A-type]] $\mathbb{Z}_N$-action (\hyperlink{Asano00}{Asano 00, around (18)}). \hypertarget{RelationToTheD6Brane}{}\subsubsection*{{Relation to the D6-brane in type IIA string theory}}\label{RelationToTheD6Brane} Under the relation between [[M-theory]] and [[type IIA superstring theory]] an [[ADE orbifold]] of the 11d KK-monopole corresponds to [[D6-branes]] combined with [[O6-planes]] (\hyperlink{Townsend95}{Townsend 95, p. 6}, \hyperlink{AtiyahWitten01}{Atiyah-Witten 01, p. 17-18} see also e.g. \hyperlink{BerglundBrandhuber02}{Berglund-Brandhuber 02, around p. 15}). By (\hyperlink{Townsend95}{Townsend 95, (1)}, \hyperlink{Sen97c}{Sen 97c (1)-(4)}) the 11d [[spacetime]] describing the KK-monopole lift of a plain single D6 brane is $\mathbb{R}^{6,1}\times \mathbb{R}^3\times S^1$ with [[metric tensor]] away from the origin of the $\mathbb{R}^3$-factor (which is the locus of the lifted D6/monopole) being \begin{displaymath} d s_{11}^2 = - d t^2 + d s_{\mathbb{R}^6}^2 + (1+\mu/r) d s_{\mathbb{R}^3}^2 + (1+ \mu/r)^{-1} (d x^{11} - A_i d x^i)^2 \,, \end{displaymath} where \begin{itemize}% \item $A = A_i d x^i$ is any 3-form on $\mathbb{R}^3$ satisfying $d_{\mathbb{R}^3} A = \star d (1-\mu/r)$; \item $r$ denotes the distance in $\mathbb{R}^3$ from the origin. \item $\mu$ is the [[charge]] of the monopole. \end{itemize} Away from $\{0\} \in \mathbb{R}^3$ this gives a [[circle bundle]] with [[first Chern class]] measured by the integral of $R_0 \coloneqq d A$ (the [[RR-field]] of the [[D0-brane]]) over any [[sphere]] surrounding the singular locus in $\mathbb{R}^3 - \{0\}$. By the [[electric-magnetic duality]] between [[D0-branes]] and [[D6-branes]] (due to the [[self-dual higher gauge theory|self-duality]] of the [[RR-field]]) this means, from the 10-dimensional perspective, that at $0 \in \mathbb{R}^3$ a [[D6-brane]] is located. \begin{quote}% graphics grabbed from \hyperlink{AcharyaGukov04}{Acharya-Gukov 04} \end{quote} Notice that the circle bundle away from its degeneration locus as a bundle over $S^2 \hookrightarrow \mathbb{R}^3 -\{0\}$ is necessarily of the form $S^3 \to S^2$, a multiple of the [[complex Hopf fibration]] (see also \hyperlink{AtiyahMaldacenaVafa00}{Atiyah-Maldacena-Vafa 00, p. 10}). Discussion as an [[ADE singularity|A-type ADE singularity]] is in (\hyperlink{Sen97c}{Sen 97c, section 2}). Generalization to [[ADE singularity|D-type singularities]] and hence D6-branes in [[orientifolds]] is in (\hyperlink{Sen97c}{Sen 97c ,section 3}). Discussion as the [[fixed point]] of the [[circle group]]-[[action]] on the M-theory circle fibers is in (\hyperlink{Townsend95}{Townsend 95, p. 6}, \hyperlink{AtiyahWitten01}{Atiyah-Witten 01, pages 17-18}). Witten emphasizes that it is important that the location of the D6 is not just a [[cyclic group]] [[orbifold]] singularity but really a [[circle group]]-[[action]] [[fixed point]] [[conical singularity]]: \begin{quote}% Chiral fermions arise when the locus of A$-$D$-$E singularities passes through isolated points at which X has an isolated conical singularity that is not just an orbifold singularity (\hyperlink{Witten01}{Witten 01, p. 2}). \end{quote} Discussion dealing carefully with the perspective where the locus of the [[D6-brane]] is not taken out is in (\hyperlink{GaillardSchmude09}{Gaillard-Schmude 09}). For more on this see at \emph{\href{D6-brane#RelationToOtherBranes}{D6-brane -- Relation to other branes}} and at \emph{[[M-theory lift of gauge enhancement on D6-branes]]}. \hypertarget{relation_to_the_d7brane_in_type_iib_string_theoryftheory}{}\subsubsection*{{Relation to the D7-brane in type IIB string theory/F-theory}}\label{relation_to_the_d7brane_in_type_iib_string_theoryftheory} Under further [[T-duality]] to [[type IIB superstring theory]]/[[F-theory]] these D6-branes become the [[D7-branes]]. [[!include F-branes -- table]] \hypertarget{other_brane_charges_}{}\subsubsection*{{Other Brane charges (?)}}\label{other_brane_charges_} In (\hyperlink{Hull97}{Hull 97}) it was argued that the KK-monopole in [[11-dimensional supergravity]] is the object which carries the 6-form charge [[Poincaré duality|Poincaré dual]] to the time-component of the 5-form charge of the [[M5-brane]] as appearing in the [[M-theory super Lie algebra]] via \begin{displaymath} \wedge^5 (\mathbb{R}^{10,1})^\ast \simeq \wedge^5 (\mathbb{R}^{10})^\ast \oplus \wedge^6 \mathbb{R}^{10} \,. \end{displaymath} (The same kind of relation identifies the time-component of the [[M2-brane]] charge with the charge of the [[M9-brane]], see there.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[M-brane]] \item [[Taub-NUT spacetime]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{in_5d_gravity}{}\subsubsection*{{In 5d gravity}}\label{in_5d_gravity} Original articles include \begin{itemize}% \item [[Rafael Sorkin]], \emph{Kaluza-Klein monopole} Phys. Rev. Lett. 51 (1983) 87 (\href{http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.51.87}{publisher}) \item [[David Gross]] and M. Perry, Nucl. Phys. B226 (1983) 29. \item P. J. Ruback, \emph{The motion of Kaluza-Klein monopoles}, Comm. Math. Phys. Volume 107, Number 1 (1986), 93-102 (\href{https://projecteuclid.org/euclid.cmp/1104115933}{euclid:1104115933}) \item A. L. Cavalcanti de Oliveira, E. R. Bezerra de Mello, \emph{Kaluza-Klein Magnetic Monopole in Five-Dimensional Global Monopole Sapcetime}, Class.Quant.Grav. 21 (2004) 1685-1694 (\href{http://arxiv.org/abs/hep-th/0309189}{arXiv:hep-th/0309189}) \end{itemize} Review includes \begin{itemize}% \item Emre Sakarya, \emph{Kaluza-Klein monopole}, 2007 (\href{https://inspirehep.net/record/875942/files/875942.pdf}{pdf}) \end{itemize} Discussion of [[topological T-duality]] for KK-monopoles is in \begin{itemize}% \item Ashwin S. Pande, \emph{Topological T-duality and Kaluza-Klein Monopoles}, Adv. Theor. Math. Phys., 12, (2007), pp 185-215 (\href{https://arxiv.org/abs/math-ph/0612034}{arXiv:math-ph/0612034}) \end{itemize} \hypertarget{in_11d_supergravity}{}\subsubsection*{{In 11d supergravity}}\label{in_11d_supergravity} \hypertarget{original_articles}{}\paragraph*{{Original articles}}\label{original_articles} \begin{itemize}% \item Seung Kee Han, I.G. Koh, \emph{$N = 4$ Remaining Supersymmetry in Kaluza-Klein Monopole Background in D=11 Supergravity Theory}, Phys.Rev. D31 (1985) 2503, in [[Michael Duff]] (ed.), \emph{[[The World in Eleven Dimensions]]} 57-60 (\href{http://inspirehep.net/record/204521/?ln=en}{spire}) \item [[Paul Townsend]], \emph{The eleven-dimensional supermembrane revisited}, Phys.Lett.B350:184-187,1995 (\href{http://arxiv.org/abs/hep-th/9501068}{arXiv:hep-th/9501068}) \item [[Chris Hull]], \emph{Gravitational Duality, Branes and Charges}, Nucl.Phys. B509 (1998) 216-251 (\href{http://arxiv.org/abs/hep-th/9705162}{arXiv:hep-th/9705162}) \item [[Ashoke Sen]], \emph{Kaluza-Klein Dyons in String Theory}, Phys.Rev.Lett.79:1619-1621,1997 (\href{http://arxiv.org/abs/hep-th/9705212}{arXiv:hep-th/9705212}) \item [[Ashoke Sen]], \emph{Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory}, Adv.Theor.Math.Phys.1:115-126, 1998 (\href{https://arxiv.org/abs/hep-th/9707042}{arXiv:hep-th/9707042}) \item [[Ashoke Sen]], \emph{A Note on Enhanced Gauge Symmetries in M- and String Theory}, JHEP 9709:001,1997 (\href{http://arxiv.org/abs/hep-th/9707123}{arXiv:hep-th/9707123}) \item Nissan Itzhaki, [[Juan Maldacena]], Jacob Sonnenschein, Shimon Yankielowicz, \emph{Supergravity and The Large $N$ Limit of Theories With Sixteen Supercharges}, Phys. Rev. D 58, 046004 1998 (\href{https://arxiv.org/abs/hep-th/9802042}{arXiv:hep-th/9802042}) \item Masako Asano, \emph{Compactification and Identification of Branes in the Kaluza-Klein monopole backgrounds} (\href{https://arxiv.org/abs/hep-th/0003241}{arXiv:hep-th/0003241}) \item [[Michael Atiyah]], [[Juan Maldacena]], [[Cumrun Vafa]], \emph{An M-theory Flop as a Large N Duality}, J.Math.Phys.42:3209-3220,2001 (\href{http://arxiv.org/abs/hep-th/0011256}{arXiv:hep-th/0011256}) \item [[Michael Atiyah]], [[Edward Witten]] \emph{$M$-Theory dynamics on a manifold of $G_2$-holonomy}, Adv. Theor. Math. Phys. 6 (2001) (\href{http://arxiv.org/abs/hep-th/0107177}{arXiv:hep-th/0107177}) \item [[Edward Witten]], \emph{Anomaly Cancellation On Manifolds Of $G_2$ Holonomy} (\href{http://arxiv.org/abs/hep-th/0108165}{arXiv:hep-th/0108165}) \item Per Berglund, Andreas Brandhuber, \emph{Matter From $G_2$ Manifolds}, Nucl.Phys. B641 (2002) 351-375 (\href{http://arxiv.org/abs/hep-th/0205184}{arXivLhep-th/0205184}) \item Jerome Gaillard, [[Johannes Schmude]], \emph{The lift of type IIA supergravity with D6 sources: M-theory with torsion}, JHEP 1002:032,2010 (\href{http://arxiv.org/abs/0908.0305}{arXiv:0908.0305}) \end{itemize} Discussion in terms of [[G-structures]]: \begin{itemize}% \item [[Ulf Danielsson]], Giuseppe Dibitetto, Adolfo Guarino, \emph{KK-monopoles and G-structures in M-theory/type IIA reductions}, JHEP 1502 (2015) 096 (\href{https://arxiv.org/abs/1411.0575}{arXiv:1411.0575}) \end{itemize} \hypertarget{review}{}\paragraph*{{Review}}\label{review} \begin{itemize}% \item [[Clifford Johnson]], section 10.5 of \emph{D-brane primer} (\href{http://arxiv.org/abs/hep-th/0007170}{arXiv:hep-th/0007170}) \item [[Katrin Becker]], [[Melanie Becker]], [[John Schwarz]], p. 333 of \emph{String Theory and M-Theory: A Modern Introduction}, 2007 \item [[Luis Ibáñez]], [[Angel Uranga]], section 6.3.3 of \emph{[[String Theory and Particle Physics -- An Introduction to String Phenomenology]]}, Cambridge University Press 2012 \item [[Bobby Acharya]], [[Sergei Gukov]], p. 45 of \emph{M theory and Singularities of Exceptional Holonomy Manifolds}, Phys.Rept.392:121-189,2004 (\href{http://arxiv.org/abs/hep-th/0409191}{arXiv:hep-th/0409191}) \end{itemize} \hypertarget{relation_to_black_holes}{}\subsubsection*{{Relation to black holes}}\label{relation_to_black_holes} Relation to [[black holes in string theory]] \begin{itemize}% \item William Nelson, \emph{Kaluza-Klein Black Holes in String Theory}, Phys.Rev.D49:5302-5306,1994 (\href{http://arxiv.org/abs/hep-th/9312058}{arXiv:hep-th/9312058}) \end{itemize} [[!redirects Kaluza-Klein monopoles]] [[!redirects KK monopole]] [[!redirects KK monopoles]] [[!redirects KK-monopole]] [[!redirects KK-monopoles]] [[!redirects MK6]] [[!redirects MK6-brane]] [[!redirects MK6-branes]] \end{document}