\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kan fibration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{illustration}{Illustration}\dotfill \pageref*{illustration} \linebreak \noindent\hyperlink{variants}{Variants}\dotfill \pageref*{variants} \linebreak \noindent\hyperlink{minimal_kan_fibration}{Minimal Kan fibration}\dotfill \pageref*{minimal_kan_fibration} \linebreak \noindent\hyperlink{quasifibration}{Quasi-fibration}\dotfill \pageref*{quasifibration} \linebreak \noindent\hyperlink{left_and_right_kan_fibration}{Left and right Kan fibration}\dotfill \pageref*{left_and_right_kan_fibration} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{acyclic_kan_fibrations_and_weak_homotopy_equivalences}{Acyclic Kan fibrations and weak homotopy equivalences}\dotfill \pageref*{acyclic_kan_fibrations_and_weak_homotopy_equivalences} \linebreak \noindent\hyperlink{pullback_and_homotopy_pullback}{Pullback and homotopy pullback}\dotfill \pageref*{pullback_and_homotopy_pullback} \linebreak \noindent\hyperlink{on_nerves_of_groupoids}{On nerves of groupoids}\dotfill \pageref*{on_nerves_of_groupoids} \linebreak \noindent\hyperlink{universal_kan_fibration}{Universal Kan fibration}\dotfill \pageref*{universal_kan_fibration} \linebreak \noindent\hyperlink{relation_to_other_concepts}{Relation to other concepts}\dotfill \pageref*{relation_to_other_concepts} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A Kan fibration is one of the notions of [[fibrations of simplicial sets]]. A \emph{Kan fibration} is a [[morphism]] $\pi : Y \to X$ of [[simplicial set|simplicial sets]] with the [[weak factorization system|lifting property]] for all [[horn]] inclusions. This means that for \begin{displaymath} \itexarray{ \Lambda^k[n] &\to& Y \\ \downarrow && \downarrow^\pi \\ \Delta^n &\to& X } \end{displaymath} a commuting square with $n\ge 1$ and $0\le k\le n$, there always exists a lift \begin{displaymath} \itexarray{ \Lambda^k[n] &\to& Y \\ \downarrow &\nearrow& \downarrow^\pi \\ \Delta^n &\to& X } \,. \end{displaymath} In terms of the canonical [[powering]] of simplicial sets over sets, this is equivalent to the morphisms \begin{displaymath} Y^{\Delta[n]} \to Y^{\Lambda^k[n]} \times_{X^{\Lambda^k[n]}} X^{\Delta^k[n]} \end{displaymath} all being [[epimorphisms]]. (Here, for instance, $Y^{\Lambda^k[n]}$ is the set of tuples of $(n-1)$-cells in $Y$ that glue along their boundaries to an image of the $k$th $n$-[[horn]].) \hypertarget{illustration}{}\subsection*{{Illustration}}\label{illustration} Kan fibrations are combinatorial analogs of [[Serre fibration|Serre]] [[fibrations]] of [[topological spaces]]. In fact, under the [[Quillen equivalence]] of the standard [[model structure on topological spaces]] and the standard [[model structure on simplicial sets]], Kan fibrations map to Serre fibrations. Recall the shape of the [[horns]] in low dimension. \begin{itemize}% \item -\textbf{$n=1$}- The horns $\Lambda^1_0$ and $\Lambda^1_1$ of the 1-[[simplex]] are just copies of the 0-[[simplex]] $\Delta^0$ regarded as the left and right endpoint of $\Delta^1$. For $n= 1$ the above condition says that for $\pi : Y \to X$ a Kan fibration we have \begin{displaymath} \itexarray{ Y &\ni & y \\ \downarrow^\pi \\ X &\ni& \pi(y) &\stackrel{\forall f}{\to}& x } \;\;\;\;\;\; \Rightarrow \;\;\;\;\;\; \itexarray{ Y &\ni& y &\stackrel{\exists \hat f}{\to}& \exists \hat x \\ \downarrow^\pi \\ X &\ni& \pi(y) &\stackrel{f = \pi(\hat f)}{\to}& x = \pi(x) } \end{displaymath} corresponding to the lifting diagram \begin{displaymath} \itexarray{ \Lambda_1^1 &\stackrel{y}{\to}& Y \\ \downarrow &{}^{\hat f}\nearrow& \downarrow^\pi \\ \Delta^1 &\stackrel{f}{\to}& X } \,. \end{displaymath} \item -\textbf{$n=2$}- the horn $\Lambda^2_1$ consists of the two top sides of a triangle. For this the Kan condition says that for any two composable 1-cells in $Y$ that have a ``composite up to a 2-cell'' in $X$, there exists a corresponding ``composite up to a 2-cell'' in $Y$ that projects down to the one in $X$: \begin{displaymath} \itexarray{ &&&&& y_2 \\ &&&& \nearrow && \searrow \\ Y &\ni& & y_1 &&&& y_3 \\ \downarrow^\pi \\ X &\ni& &&& \pi(y_2) \\ &&& & \nearrow &\Downarrow^{\forall h}& \searrow \\ &&& \pi(y_1) &&\to&& \pi(y_2) } \;\;\;\;\;\; \Rightarrow \;\;\;\;\;\; \itexarray{ &&&&& y_2 \\ &&&& \nearrow &\Downarrow^{\exists \hat h}& \searrow \\ Y &\ni& & y_1 &&\stackrel{\exists}{\to}&& y_3 \\ \downarrow^\pi \\ X &\ni& &&& \pi(y_2) \\ &&& & \nearrow &\Downarrow^{h = \pi(\hat h)}& \searrow \\ &&& \pi(y_1) &&\to&& \pi(y_2) } \end{displaymath} This corresponds to the lifting diagram \begin{displaymath} \itexarray{ \Lambda_2^1 &\stackrel{y}{\to}& Y \\ \downarrow &{}^{\hat h}\nearrow& \downarrow^\pi \\ \Delta^2 &\stackrel{h}{\to}& X } \,. \end{displaymath} \begin{itemize}% \item Crucial is this condition for the \emph{outer horns} $\Lambda^n_0$ and $\Lambda^n_n$, where it says that the above works not only when edges are composable, but also when they meet just at their sources or their targets. For instance for the horn $\Lambda^2_2$ the picture is\begin{displaymath} \itexarray{ &&&&& y_2 \\ &&&& && \searrow \\ Y &\ni& & y_1 &&\to&& y_3 \\ \downarrow^\pi \\ X &\ni& &&& \pi(y_2) \\ &&& & \nearrow &\Downarrow^{\forall h}& \searrow \\ &&& \pi(y_1) &&\to&& \pi(y_2) } \;\;\;\;\;\; \Rightarrow \;\;\;\;\;\; \itexarray{ &&&&& y_2 \\ &&&& {}^\exists\nearrow &\Downarrow^{\exists \hat h} & \searrow \\ Y &\ni& & y_1 &&\stackrel{\exists}{\to}&& y_3 \\ \downarrow^\pi \\ X &\ni& &&& \pi(y_2) \\ &&& & \nearrow &\Downarrow^{h = \pi(\hat h)}& \searrow \\ &&& \pi(y_1) &&\to&& \pi(y_2) } \end{displaymath} This corresponds to the lifting diagram \begin{displaymath} \itexarray{ \Lambda_2^2 &\stackrel{y}{\to}& Y \\ \downarrow &{}^{\hat h}\nearrow& \downarrow^\pi \\ \Delta^2 &\stackrel{h}{\to}& X } \,. \end{displaymath} \end{itemize} \end{itemize} \hypertarget{variants}{}\subsection*{{Variants}}\label{variants} \hypertarget{minimal_kan_fibration}{}\subsubsection*{{Minimal Kan fibration}}\label{minimal_kan_fibration} A Kan fibration $p : E \to B$ is called a \textbf{[[minimal Kan fibration]]} if for all cells $x,y : \Delta[n] \to E$ the condition $p(x) = p(y)$ and $\partial_i x = \partial_i y$ implies for all $k$ that $\partial_k x = \partial_k y$. \hypertarget{quasifibration}{}\subsubsection*{{Quasi-fibration}}\label{quasifibration} A \textbf{quasi-fibration} or \textbf{weak Kan fibration} or \textbf{inner Kan fibration} of simplicial sets is defined as above, but with the lifting property only imposed in \emph{inner horns}: $\Lambda^n_k$ with $0 \lt k \lt (n-1)$, not the \emph{outer horns} $\Lambda^n_0$ and $\Lambda^n_n$. This weakened condition then says that \emph{composition} of cells may be lifted through the quasi-fibration, but not necessarily [[inverse|inversion]] of 1-cells. See [[fibrations of quasi-categories]] for more details. \hypertarget{left_and_right_kan_fibration}{}\subsubsection*{{Left and right Kan fibration}}\label{left_and_right_kan_fibration} Similarly, a \textbf{left Kan fibration} is one that has the lifting property for all horns except possibly the last one. and a \textbf{right Kan fibration} is one that has the lifting property for all horns except possibly the first one. See [[fibrations of quasi-categories]] for more details. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{acyclic_kan_fibrations_and_weak_homotopy_equivalences}{}\subsubsection*{{Acyclic Kan fibrations and weak homotopy equivalences}}\label{acyclic_kan_fibrations_and_weak_homotopy_equivalences} \begin{theorem} \label{}\hypertarget{}{} The [[acyclic Kan fibrations]] morphisms $f : X \to Y$ of Kan complexes that are both Kan fibrations as well as [[model structure on simplicial sets|weak equivalences]] in that they induce isomorphisms on all [[simplicial homotopy groups]] (i.e. the \textbf{[[acyclic fibrations]]} of Kan complexes) are precisely the morphisms that have the [[weak factorization system|right lifting property]] with respect to all [[boundary of a simplex|boundary inclusions]] $\partial \Delta^n \hookrightarrow \Delta^n$: \begin{displaymath} \itexarray{ \partial \Delta[n] &\to& X \\ \downarrow &{}^\exists\nearrow& \downarrow^f \\ \Delta[n] &\to& Y } \,. \end{displaymath} \end{theorem} e.g. (\hyperlink{GoerssJardine96}{Goerss-Jardine, chapter I}) \begin{cor} \label{}\hypertarget{}{} Kan fibrations and acyclic Kan fibrations are both stable under [[pullback]]. \end{cor} \begin{proof} Because every class of morphisms defined by a [[weak factorization system|right lifting property]] is stable under pullback. \end{proof} \begin{remark} \label{}\hypertarget{}{} From this it follows readily that [[Kan complexes]] form a Brownian [[category of fibrant objects]]. \end{remark} \begin{prop} \label{AcyclicFibrationsDetectedFiberwise}\hypertarget{AcyclicFibrationsDetectedFiberwise}{} A Kan fibration $f\colon X\to Y$ is acyclic precisely if the [[fiber]] $f^{-1}(y)$ over each vertex $y$ is [[contractible]]. \end{prop} Purely combinatorial proofs of this statement include (\hyperlink{Joyal}{Joyal, prop. 8.23}, \hyperlink{RiehlVerity13}{Riehl-Verity 13, lemma 5.4.16}) \hypertarget{pullback_and_homotopy_pullback}{}\subsubsection*{{Pullback and homotopy pullback}}\label{pullback_and_homotopy_pullback} \begin{lemma} \label{PullbackOfKanFibrationSendsLeftHomotopyToFiberwiseHomotopyequivalence}\hypertarget{PullbackOfKanFibrationSendsLeftHomotopyToFiberwiseHomotopyequivalence}{} Let $p \colon X \longrightarrow Y$ be a [[Kan fibration]], def. \ref{KanFibration}, and let $f_1,f_2 \colon A \longrightarrow X$ be two morphisms. If there is a [[left homotopy]] $f_1 \rightarrow f_2$ between these maps, then there is a fiberwise [[homotopy equivalence]], between the [[pullback]] fibrations $f_1^\ast X \simeq f_2^\ast X$. \end{lemma} (e.g. \hyperlink{GoerssJardine96}{Goerss-Jardine 96, chapter I, lemma 10.6}) See also at \emph{[[homotopy pullback]]}. \hypertarget{on_nerves_of_groupoids}{}\subsubsection*{{On nerves of groupoids}}\label{on_nerves_of_groupoids} \begin{theorem} \label{}\hypertarget{}{} A [[functor]] $F \colon C \to D$ between [[groupoids]] is [[k-surjective functor|k-surjective]] for all $k$ and hence a surjective [[equivalence of categories]] precisely if under the [[nerve]] $N(F) : N(C) \to N(D)$ it induces an acyclic fibration of Kan complexes; \end{theorem} \begin{proof} We know that both $N(C)$ and $N(D)$ are Kan complexes. By the above theorem it suffices to show that $N(f)$ being a surjective equivalence is the same as having all lifts \begin{displaymath} \itexarray{ \delta \Delta[n] &\to& N(C) \\ \downarrow &{}^\exists\nearrow& \downarrow^{N(F)} \\ \Delta[n] &\to& N(D) } \,. \end{displaymath} We check successively what this means for increasing $n$: \begin{itemize}% \item $n= 0$. In degree 0 the boundary inclusion is that of the empty set into the [[nLab:point|point]] $\emptyset \hookrightarrow {*}$. The lifting property in this case amounts to saying that every point in $N(D)$ lifts through $N(F)$. \begin{displaymath} \itexarray{ \emptyset &\to& N(C) \\ \downarrow &{}^\exists\nearrow& \downarrow^{N(F)} \\ {*} &\to& N(D) } \Leftrightarrow \itexarray{ && N(C) \\ &{}^\exists\nearrow& \downarrow^{N(F)} \\ {*} &\to& N(D) } \,. \end{displaymath} This precisely says that $N(F)$ is surjective on 0-cells and hence that $F$ is surjective on objects. \item $n=1$. In degree 1 the boundary inclusion is that of a pair of points as the endpoints of the interval $\{\circ, \bullet\} \hookrightarrow \{\circ \to \bullet\}$. The lifting property here evidently is equivalent to saying that for all objects $a,b \in Obj(C)$ all elements in $Hom(F(a),F(b))$ are hit. Hence that $F$ is a [[nLab:full functor|full functor]]. \item $n=2$. In degree 2 the boundary inclusion is that of the triangle as the boundary of a filled triangle. It is sufficient to restrict attention to the case that the map $\partial \Delta[2] \to N(C)$ sends the top left edge of the triangle to an identity. Then the lifting property here evidently is equivalent to saying that for all objects $a,b \in Obj(C)$ the map $F_{a,b} : Hom(a,b) \to Hom(F(a),F(b))$ is injective. Hence that $F$ is a [[nLab:faithful functor|faithful functor]]. \begin{displaymath} \left( \itexarray{ && a \\ & {}^{Id_a}\nearrow && \searrow^{f} \\ a &&\stackrel{g}{\to}&& b } \right) \stackrel{N(F)}{\mapsto} \left( \itexarray{ && a \\ & {}^{Id_a}\nearrow &\Downarrow^=& \searrow^{F(f)} \\ a &&\stackrel{F(g)}{\to}&& b } \right) \end{displaymath} \end{itemize} \end{proof} \hypertarget{universal_kan_fibration}{}\subsubsection*{{Universal Kan fibration}}\label{universal_kan_fibration} See at \emph{[[universal Kan fibration]]}. \hypertarget{relation_to_other_concepts}{}\subsection*{{Relation to other concepts}}\label{relation_to_other_concepts} \begin{itemize}% \item Kan fibrations and quasi-fibrations are fibrations in two common [[model structure on simplicial sets|model structures on simplicial sets]]. \item Recall that the [[horn]] $\Lambda^k[n]$ is the boundary of the $n$-[[simplex]] $\Delta^n$ with one face removed. If in the above definition one replaces horns with the full boundaries of simplices, one obtaines the definition of a [[hypercover]], the acyclic fibrations in the classical [[model structure on simplicial sets]]. \item A simplicial set $X$ for which the unique morphism $X \to pt$ to the [[terminal object|terminal simplicial set]] is a Kan fibration is called a [[Kan complex]]. \item A simplicial set $X$ for which the unique morphism $X \to pt$ to the [[terminal object|terminal simplicial set]] is a quasi-fibration/weak Kan fibration is called a [[quasi-category]]. \item Just as the underlying simplicial set of a [[simplicial group]] is a [[Kan complex]] (see algorithm at [[simplicial group]]), so also given any simplicial morphism $f : G\to H$ of simplicial groups for which in each dimension, $n$, the homomorphism $f_n : G_n \to H_n$ is an [[epimorphism]], then the underlying simplicial map of simplicial sets is a Kan fibration. (Apart from a careful choice of section in each dimension, the proof can be constructed from the algorithm given in [[simplicial group]].) \item A morphism of simplicial sets that has the left [[lifting property]] with respect to all Kan fibrations is called an [[anodyne morphism]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{Kan fibration}, [[anodyne morphism]] \begin{itemize}% \item [[acyclic Kan fibration]] \end{itemize} \item [[right/left Kan fibration]], [[right/left anodyne map]] \item [[inner fibration]] \item [[Cartesian fibration]] \item [[simplicial homotopy theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard textbook account is \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], \emph{[[Simplicial homotopy theory]]}, 1996 \end{itemize} That [[geometric realization]] takes Kan fibrations to [[Serre fibrations]] is due to \begin{itemize}% \item [[Dan Quillen]], \emph{The geometric realization of a Kan fibration is a Serre fibration, Proc. AMS 19 (1968), 1499--1500} \end{itemize} See also \begin{itemize}% \item [[Andre Joyal]] \emph{Theory of Quasi-Categories and its applications} \href{http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf}{pdf} \item [[Emily Riehl]], [[Dominic Verity]], \emph{Homotopy coherent adjunctions and the formal theory of monads}, (\href{http://arxiv.org/abs/1310.8279}{arXiv:1310.8279}) \end{itemize} [[!redirects Kan fibrations]] \end{document}