\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kan lift} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{terminology}{Terminology}\dotfill \pageref*{terminology} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{local_description}{Local description}\dotfill \pageref*{local_description} \linebreak \noindent\hyperlink{global_description}{Global description}\dotfill \pageref*{global_description} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Kan lift} in a [[2-category]] or in a [[bicategory]] is [[duality|dual]] to the notion of [[Kan extension]], by a process of turning the 1-cells around, much in the same way as a [[homotopy lifting property]] is dual to a [[homotopy extension property]] (in [[model category|model category theory]], for instance). Informally, a Kan lift is a best approximate solution to the problem of finding a lift $\widetilde{f}: A \to B$ of an arrow ([[morphism]]) $f: A \to C$ through an arrow $p: B \to C$, as in the [[diagram]] \begin{displaymath} \itexarray{ & & B \\ & & \downarrow p \\ A & \overset{f}{\to} & C } \end{displaymath} Of course, lifts typically don't literally exist in the sense of an equation $p \circ \widetilde{f} = f$ or an [[isomorphism]] $p \circ \widetilde{f} \cong f$. But in good situations, one may have the next best thing: a [[2-morphism|2-cell]] $p \circ \widetilde{f} \Rightarrow f$ which is universal among 2-cells of this form. This gives the notion of \emph{right} Kan lift. The notion of \emph{left} Kan lift is similar, but with 2-cells in the opposite direction. \hypertarget{terminology}{}\subsubsection*{{Terminology}}\label{terminology} Usually, when working within a 2-categorical context, Kan lifts are simply refered to as \emph{lifts/liftings}, just as what happens with [[Kan extension|Kan extensions]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} As in the discussion at [[Kan extension]], there is a local notion of Kan lift and a global notion. Expanding on the informal description above, we give the local notion first, followed by the (conceptually more perspicuous) global notion in terms of [[adjoint functor]]s. \hypertarget{local_description}{}\subsubsection*{{Local description}}\label{local_description} Given 1-cells $p: B \to C$, $f: A \to C$ in a [[bicategory]], a \textbf{right Kan lift} of $f$ through $p$, denoted $Rift_p f$, is a 1-cell $\widetilde{f}: A \to B$ equipped with a 2-cell \begin{displaymath} \varepsilon: p \circ \widetilde{f} \Rightarrow f \end{displaymath} satisfying the [[universal property]]: given any pair $(g: A \to B, \eta: p \circ g \Rightarrow f)$, there exists a unique 2-cell \begin{displaymath} \zeta: g \Rightarrow \widetilde{f} \end{displaymath} such that $\varepsilon \bullet (p \circ \zeta) = \eta$. (Here $\circ$ refers to composition across a 0-cell, and $\bullet$ to composition across a 1-cell.) As with any universal description, the pair $(Rift_p f, \varepsilon)$ is unique up to unique 2-cell isomorphism. A \textbf{left Kan lift} of $f$ through $p$, denoted $Lift_p f$, is a 1-cell $\widetilde{f}: A \to B$ equipped with a 2-cell \begin{displaymath} \eta: f \Rightarrow p \circ \widetilde{f} \end{displaymath} such that given any pair $(g: A \to B, \theta: f \Rightarrow p \circ g)$, there exists a unique 2-cell \begin{displaymath} \zeta: \widetilde{f} \Rightarrow g \end{displaymath} such that $(p \circ \zeta) \bullet \eta = \theta$. \hypertarget{global_description}{}\subsubsection*{{Global description}}\label{global_description} Given $p: B \to C$ and a 0-cell $A$ in a bicategory, if the right Kan lift $Rift_p f$ exists for any $f: A \to C$, then we speak of a \textbf{global} Kan lift. When this is the case, we may define a functor between hom-categories \begin{displaymath} Rift_p: [A, C] \to [A, B] \end{displaymath} which at the object level is of course $f \mapsto Rift_p f$. At the morphism level, given a 2-cell \begin{displaymath} \eta: f \Rightarrow g: A \to C \end{displaymath} there is an induced 2-cell $Rift_p f \Rightarrow Rift_p g$, the one which corresponds (by the universal property of $Rift_p g$) to the composite \begin{displaymath} p \circ Rift_p f \overset{\varepsilon}{\Rightarrow} f \overset{\eta}{\Rightarrow} g. \end{displaymath} A standard universality argument shows that $Rift_p$ thus defined is functorial. \textbf{Proposition:} $Rift_p$ is right adjoint to the functor $[A, p]: [A, B] \to [A, C]$ obtained by postcomposing with $p$, i.e., the functor $f \mapsto p \circ f$. This is the easier, more conceptual way to remember right Kan lifts: in a global sense, they are right adjoint to postcomposition. Similarly, global left Kan lifts are left adjoint to postcomposition. \begin{itemize}% \item In a \href{http://golem.ph.utexas.edu/category/2009/06/kan_lifts.html}{post} at the nCaf\'e{}, [[David Corfield]] put the question: why are Kan extensions more frequently mentioned than Kan lifts? One proposed \href{http://golem.ph.utexas.edu/category/2009/06/kan_lifts.html#c024705}{answer} is that in many cases a left or right Kan lift will exist for a trivial reason: namely that $p$ itself has a left or right adjoint. Other examples will be given below. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Dual to the situation in Kan extensions, one is interested in whether a Kan lift is \emph{respected} by a 1-cell with codomain the domain of the lift. This is defined as follows: \begin{itemize}% \item given $(\widetilde{f}, \varepsilon) = \operatorname{Rift}_p f$, $g$ is said to \emph{respect} this right lift if $(\widetilde{f}g, \varepsilon \bullet g) = \operatorname{Rift}_p(f g)$ \end{itemize} and analogously for left Kan lifts. A Kan lift $\widehat{f}$ is \emph{absolute} if it is respected by any 1-cell into $\operatorname{dom}(\widehat{f})$. Absolute Kan lifts subsume adjunctions and relative adjunctions, and are prominently present in the axioms of a [[Yoneda structure]]; for more see the examples below. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Let $Mod$ denote the [[framed bicategory]] of small categories $C$, bimodules $r: C \to D$ (i.e., functors $r: D^{op} \times C \to Set$), and transformations between such bimodules. Then global right Kan lifts exist (as do global right Kan extensions). These may be computed as [[weighted limit]]s or via [[end]] formulas, e.g.,\begin{displaymath} (Rift_r s)(b, c) = \int_{d: D} hom(r(d, c), s(d, b)) \end{displaymath} \end{itemize} Examples of this construction abound in mathematics, especially when generalized to the [[enriched category theory]] context. For example, in the bicategory $Rel$, which corresponds to enrichment in $\mathbf{2}$, the right Kan lift is essentially a universally quantified predicate of the form \begin{displaymath} \forall_{d: D} r(d, c) \Rightarrow s(d, b) \end{displaymath} (``for all $d$ satisfying condition $r$, we impose condition $s$''). \begin{itemize}% \item More generally, a [[biclosed bicategory]] is precisely a bicategory where global right Kan extensions and right Kan lifts exist for every 1-cell $p$. Monoidal bicategories provide instances of this. \item adjunctions in a 2-category can be defined in terms of Kan lifts: a 1-cell $u\colon A \to B$ has a left adjoint iff $\operatorname{Lift}_u 1_B$ exists and is absolute; in this case putting $(f,\iota) = \operatorname{Lift}_u 1_B$ we have $f \dashv u$ with unit $\iota \colon 1_B \Rightarrow u f$. The universal property of the left Kan lift plus absoluteness are enough to construct the counit and to verify the triangular equations. There's of course a dual definition in terms of absolute right Kan lifts. \item relative adjoints in $\mathbf{Cat}$ can also be expressed as absolute kan lifts; see [[relative adjoint]] for a precise statement. \item representably fully faithful 1-cells, meaning those for which $B(X,f)$ is fully faithful in $\mathbf{Cat}$ for every object $X\colon B$, are those for which $(1_A, 1_f) = \operatorname{Lift}_f f$, and this lifting is absolute. \item In $Cat$, if $A$ is small and $B$ is locally small, and if $F: A \to B$ is a functor, then we have a Yoneda embedding $y: A \to P A = Set^{A^{op}}$ and a functor $B(F-, -): B \to P A$, and there is a canonical map \begin{displaymath} y_A \to B(F-, -) \circ f \end{displaymath} (essentially, $hom(a, b) \to hom(F a, F b)$ taking $f: a \to b$ to $F f: F a \to F b$). This arrow exhibits $F$ as a left Kan lift of $y$ through $B(F-, -)$, which is moreover absolute. This example is important in the theory of Yoneda structures, due to Street and Walters; see Mark Weber's updated \href{http://www.pps.jussieu.fr/~weber/Two-toposes4.pdf}{development} in the context of 2-topos theory. \end{itemize} [[!redirects Kan lifting]] \end{document}