\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kantorovich monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{wasserstein_spaces}{Wasserstein spaces}\dotfill \pageref*{wasserstein_spaces} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{functor_unit_and_multiplication}{Functor, unit and multiplication}\dotfill \pageref*{functor_unit_and_multiplication} \linebreak \noindent\hyperlink{algebras}{Algebras}\dotfill \pageref*{algebras} \linebreak \noindent\hyperlink{duality}{Duality}\dotfill \pageref*{duality} \linebreak \noindent\hyperlink{the_ordered_case}{The ordered case}\dotfill \pageref*{the_ordered_case} \linebreak \noindent\hyperlink{for_lawvere_metric_spaces}{For Lawvere metric spaces}\dotfill \pageref*{for_lawvere_metric_spaces} \linebreak \noindent\hyperlink{see_also}{See also}\dotfill \pageref*{see_also} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The Kantorovich monad is a [[probability monad]] on the category of [[complete metric spaces]] and 1-Lipschitz (or [[Lipschitz map|Lipschitz]]) maps. Its functor part assigns to each complete metric space $X$ the space of [[Radon measure|Radon]] [[probability measures]] with finite first moment, equipped with the [[Kantorovich-Wasserstein distance]]. Its [[algebra over a monad|algebras]] are [[closed set|closed]] [[convex set|convex]] subsets of [[Banach spaces]]. The construction was first given by van Breugel for the compact case (see \hyperlink{vanbreugel}{vB `05}). There is an [[order theory|ordered]] version of the Kantorovich monad, making use of the [[stochastic order]]. Its [[algebra over a monad|algebras]] are [[closed set|closed]] [[convex set|convex]] subsets of [[ordered Banach spaces]]. \hypertarget{wasserstein_spaces}{}\subsection*{{Wasserstein spaces}}\label{wasserstein_spaces} Let $X$ be a [[metric space]]. A [[probability measure]] on $X$ has \textbf{finite first moment} if \begin{displaymath} \int_{X\times X} d(x,y) \, dp(x)\,dp(y) \;\lt\; +\infty, \end{displaymath} where $d(-,-)$ denotes the [[distance]]. Let $p$ and $q$ be [[Radon measure|Radon]] [[probability measures]] on $X$ of finite first moment. The \textbf{[[Kantorovich-Wasserstein distance]]} is given by \begin{displaymath} d(p,q) \;\coloneqq\; \inf_{r\in\Gamma(p,q)} \int_{X\times X} d(x,y) \,dr(x,y) , \end{displaymath} where the infimum (which is attained if $X$ is complete) is taken over the set $\Gamma(p,q)$ of [[joint measure|couplings]] of $p$ and $q$, i.e. the measures on $X\times X$ which admit $p$ and $q$ as their [[marginal measure|marginals]]. Equivalently, the distance can be written as \begin{displaymath} d(p,q) \;=\; \sup_{f\in[X,\mathbb{R}]} \int f\, dp - \int f\, dq, \end{displaymath} where the supremum (which is usually not attained) is taken over the set of 1-[[Lipschitz map|Lipschitz]] functions $X\to \mathbb{R}$. (This equivalence is an instance of the celebrated [[Kantorovich duality]].) The \textbf{1-Wasserstein space} over $X$ is the space $P X$ of Radon probability measures on $X$ with finite first moment, equipped with the Wasserstein metric. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \begin{itemize}% \item If $X$ is [[complete metric space|complete]], so is $P X$. \item If $X$ is [[separable space|separable]], so if $P X$. \item If $X$ is [[compact]], so is $P X$. \end{itemize} More information on Wasserstein spaces can be found in \hyperlink{villani}{Villani `08}. \hypertarget{functor_unit_and_multiplication}{}\subsection*{{Functor, unit and multiplication}}\label{functor_unit_and_multiplication} As it is customary for [[probability monads]], the functor assigns to a [[morphism]] $f:X\to Y$ (in this case, a [[Lipschitz map|Lipschitz]] or 1-Lipschitz map) the map $P f: P X \to P Y$ induced by the [[pushforward of measures]]. The pushforward of a Radon probability measure of finite first moment along a Lipschitz map is again Radon and of finite first moment. Moreover, the resulting map $P f$ is again Lipschitz, with the same Lipschitz constant as $f$. Therefore we have an endofunctor $P$ on the category of [[complete metric spaces]] and [[Lipschitz maps]] (or 1-Lipschitz). Again, as it happens in general with [[probability monads]], the unit $\delta:X\to P X$ is given by forming the [[Dirac measures]] and the multiplication $E:P P X\to P X$ is given by [[integration]]. More formally, given $\xi\in P P X$, the measure $E \xi\in PX$ is defined as the one which assigns to a [[Borel set]] $A\subseteq X$ the number \begin{displaymath} E \xi(A) \;\coloneqq\; \int p(A) \,d\xi(p) . \end{displaymath} The maps $\delta$ and $E$ satisfy the usual [[axioms]] of a [[monad]] (see \hyperlink{kantorovich19}{F-P `19}), which is known as the \textbf{Kantorovich monad}. \hypertarget{algebras}{}\subsection*{{Algebras}}\label{algebras} As it is the case for most [[probability monad]], the algebras are [[convex spaces]] of a particular kind. For the Kantorovich monad, the objects of the underlying category are complete metric spaces, and so the [[closed set|closed]] [[convex set|convex]] subsets of [[Banach spaces]] are an ideal candidate: they are [[metric spaces]], they are [[complete metric space|complete]], and they have a well-defined [[convex space|convex combination operation]]. It turns out that this is exactly the case. More in detail, every closed convex subset $A$ of a Banach space comes equipped with a map $e:P A\to A$ given by vector-valued [[integration]], \begin{displaymath} p\;\mapsto\; \int a \,dp(a) . \end{displaymath} The integral exists since $p$ has finite first moment. Conversely, it can be proven that every $P$-algebra is of this form. The [[Eilenberg-Moore category|morphisms of algebras]] are maps between algebras $f:A\to B$ which commute with the integration map. It can be shown that equivalently these are exactly the \textbf{affine} maps, i.e.{\tt \symbol{126}}those maps which satisfy \begin{displaymath} f\big(\lambda\,x + (1-\lambda)\,y\big) \;=\; \lambda\,f(x) + (1-\lambda)\,f(y). \end{displaymath} For more details, see \hyperlink{kantorovich19}{F-P `19}. \hypertarget{duality}{}\subsection*{{Duality}}\label{duality} (\ldots{}) \hypertarget{the_ordered_case}{}\subsection*{{The ordered case}}\label{the_ordered_case} (Work in progress. For now see \hyperlink{orderedkantorovich}{F-P `18}.) \hypertarget{for_lawvere_metric_spaces}{}\subsection*{{For Lawvere metric spaces}}\label{for_lawvere_metric_spaces} (\ldots{}) \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} \begin{itemize}% \item [[monads of probability, measures, and valuations]] \item [[Giry monad]], [[Radon monad]], [[extended probabilistic powerdomain]] \item [[Kantorovich-Wasserstein distance]], [[optimal transport]] \item [[metric space]], [[complete metric space]] \item [[Banach space]], [[ordered Banach space]], [[convex space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Franck van Breugel, \emph{The metric monad for probabilistic nondeterminism}, unpublished, 2005. (\href{http://www.cse.yorku.ca/~franck/research/drafts/monad.pdf}{pdf}) \item [[Tobias Fritz]] and Paolo Perrone, \emph{A probability monad as the colimit of spaces of finite samples}, Theory and Applications of Categories 34, 2017. (\href{http://www.tac.mta.ca/tac/volumes/34/7/34-07.pdf}{pdf}) \item [[Tobias Fritz]] and Paolo Perrone, \emph{Stochastic order on metric spaces and the ordered Kantorovich monad}, submitted, 2018. (\href{https://arxiv.org/abs/1808.09898}{arXiv:1808.09898}) \item [[Cedric Villani]], \emph{Optimal transport: old and new}, Springer, 2008. \item Paolo Baldan, Filippo Bonchi, Henning Kerstan and Barbara König, \emph{Coalgebraic behavioral metrics}, Logical Methods in Computer Science 14(3), 2018. (\href{https:doi.org/10.23638/LMCS-14%283:20%292018}{doi: 10.23638/LMCS-14(3:20)2018}) \end{itemize} \end{document}