\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kazhdan-Lusztig theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Kazhdan-Lusztig theory is about special recursive combinatorics which appears in several setups in mathematics, most notably in representation theory where it concerns the Jordan-H\"o{}lder coefficients of certain modules. As a phenomenon it has been discovered by [[David Kazhdan]] and [[George Lusztig]], and some partial aspects independently by Deodhar. A central result is the Kazhdan-Lusztig conjecture, proved by Borho-Brylinski and by [[Masaki Kashiwara]] using [[D-module]]s and [[perverse sheaves]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[David Kazhdan]], [[George Lusztig]], \emph{Representations of Coxeter groups and Hecke algebras}, Invent. Math. \textbf{53} (1979), no. 2, 165--184, \href{http://www.ams.org/mathscinet-getitem?mr=560412}{MR81j:20066}, \href{http://dx.doi.org/10.1007/BF01390031}{doi} \item D. Kazhdan, G. Lusztig, \emph{Schubert varieties and Poincar\'e{} duality, in: Geometry of the Laplace operator, 185--203, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc. 1980.} \item \emph{Kazhdan-Lusztig theory}, chapter 8 in James E. Humphreys, \emph{Representations of semisimple Lie algebras in the BGG category $\mathcal{O}$}, Graduate Studies in Mathematics \textbf{94}, Amer. Math. Soc. 2008. xvi+289 pp. \item [[Wolfgang Soergel]], \emph{Kazhdan-Lusztig-Polynome und eine Kombinatorik f\"u{}r Kipp-Moduln}, Represent. Theory 1 (1997) 37-68, \href{http://www.ams.org/ert/1997-001-04/S1088-4165-97-00006-X/S1088-4165-97-00006-X.pdf}{pdf}; engl. version Kazhdan-Lusztig polynomials and a combinatoric for tilting modules. Represent. Theory 1 (1997) 83-114, \href{http://www.ams.org/ert/1997-001-06/S1088-4165-97-00021-6/S1088-4165-97-00021-6.pdf}{pdf}. \item R. Hotta, K. Takeuchi, T. Tanisaki, \emph{D-modules, perverse sheaves, and representation theory}, Progress in Mathematics \textbf{236}, Birkh\"a{}user, Boston 2008. \item Jean-Luc Brylinski, [[Masaki Kashiwara]], \emph{D\'e{}monstration de la conjecture de Kazhdan-Lusztig sur les modules de Verma}, C. R. Acad. Sci. Paris S\'e{}r. A-B \textbf{291} (1980), no. 6, A373--A376, \href{http://www.ams.org/mathscinet-getitem?mr=596075}{MR81k:17004} \item Walter Borho, Jean-Luc Brylinski, \emph{Differential operators on homogeneous spaces. I. Irreducibility of the associated variety for annihilators of induced modules.} Invent. Math. \textbf{69} (1982), no. 3, 437--476, \href{http://www.ams.org/mathscinet-getitem?mr=679767}{MR84b:17007}, \href{http://ams.mpim-bonn.mpg.de/leavingmsn?url=http://dx.doi.org/10.1007/BF01389364}{doi}; \emph{II. Relative enveloping algebras.}, Bull. Soc. Math. France \textbf{117} (1989), no. 2, 167--210, \href{http://www.ams.org/mathscinet-getitem?mr=1015807}{MR90j:17023}, \href{http://www.numdam.org/item?id=BSMF_1989__117_2_167_0}{numdam} \item N. Chriss, [[V. Ginzburg]], \emph{Representation theory and complex geometry}, Birkh\"a{}user 1997. x+495 pp. \item Vinay V. Deodhar, \emph{On a construction of representations and a problem of Enright}, Invent. Math. \textbf{57} (1980), no. 2, 101--118, \href{http://www.ams.org/mathscinet-getitem?mr=567193}{MR81f:17004}, \href{http://dx.doi.org/10.1007/BF01390091}{doi} \item Vinay V. Deodhar, \emph{On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells}, Invent. Math. \textbf{79} (1985), no. 3, 499--511, \href{http://www.ams.org/mathscinet-getitem?mr=782232}{MR86f:20045}, \href{http://dx.doi.org/10.1007/BF01388520}{doi}; \emph{II. The parabolic analogue of Kazhdan-Lusztig polynomials}, \href{http://www.ams.org/mathscinet-getitem?mr=916182}{MR89a:20054}, \href{http://dx.doi.org/10.1016/0021-8693(87}{doi}90232-8) \item [[Anthony Joseph]], \emph{The Enright functor on the Bernstein-Gelfand-Gelfand category $\mathcal{O}$}, Invent. Math. \textbf{67} (1982), no. 3, 423--445, \href{http://www.ams.org/mathscinet-getitem?mr=664114}{MR84j:17005}, \href{http://dx.doi.org/10.1007/BF01398930}{doi} \item \emph{Kazhdan-Lusztig theory and related topics}, Proc. of the AMS Special Session at Loyola Univ., Chicago 1989. Edited by Vinay Deodhar. Contemporary Mathematics \textbf{139}, Amer. Math. Soc. 1992. \item V. Deodhar, \emph{A brief survey of Kazhdan-Lusztig theory and related topics}, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), 105--124, Proc. Sympos. Pure Math. \textbf{56}, Part 1, Amer. Math. Soc. 1994. \item Vinay V. Deodhar, [[Ofer Gabber]], [[Victor Kac]], \emph{Structure of some categories of representations of infinite-dimensional Lie algebras}, Adv. in Math. \textbf{45} (1982), no. 1, 92--116. \href{http://www.ams.org/mathscinet-getitem?mr=663417}{MR83i:17012}, \href{http://dx.doi.org/10.1016/S0001-8708(82}{doi}80014-5) \item O. Gabber, A Joseph, \emph{Towards the Kazhdan-Lusztig conjecture}, Ann. Sci. \'E{}cole Norm. Sup. (4) 14 (1981), no. 3, 261--302, \href{http://www.ams.org/mathscinet-getitem?mr=644519}{MR83e:17009}, \href{http://www.numdam.org/item?id=ASENS_1981_4_14_3_261_0}{numdam} \end{itemize} The following article proves a conjecture from above article of Deodhar, Gabber and Kac: \begin{itemize}% \item Luis Casian, \emph{Proof of the Kazhdan-Lusztig conjecture for Kac-Moody algebras (the characters} $\mathrm{ch}\,L_{\omega\rho-\rho})$, Adv. Math. \textbf{119} (1996), no. 2, 207--281, \href{http://www.ams.org/mathscinet-getitem?mr=1390798}{MR97k:17033}, doi \item A. V. Zelevinski, \emph{The $p$-adic analogue of the Kazhdan-Lusztig conjecture}, Funktsional. Anal. i Prilozhen. \textbf{15} (1981), no. 2, 9--21, 96. \item Luis G. Casian, David H. Collingwood, \emph{The Kazhdan-Lusztig conjecture for generalized Verma modules}, Math. Z. \textbf{195} (1987), no. 4, 581--600, \href{http://www.ams.org/mathscinet-getitem?mr=900346}{MR88i:17008}, \href{http://dx.doi.org/10.1007/BF01166705}{doi} \end{itemize} [[!redirects Kazhdan-Lusztig polynomial]] \end{document}