\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Killing spinor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_supersymmetry}{Relation to supersymmetry}\dotfill \pageref*{relation_to_supersymmetry} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Killing spinor} on a ([[pseudo-Riemannian manifold|pseudo]]-)[[Riemannian manifold]] $X$ is a \emph{[[spinor]]} -- a [[section]] of some [[spinor bundle]] $v \in \Gamma(S)$ -- that is taken by the [[covariant derivative]] of the corresponding [[Levi-Civita connection]] to a multiple of itself \begin{displaymath} \nabla_v \psi = \kappa \gamma_v \psi \end{displaymath} for some constant $\kappa$. If that constant is 0, hence if the spinor is \emph{covariant constant}, then one also speaks of a \emph{covariant constant spinor} or \emph{parallel spinor} (with respect to the given metric structure). More generally, a \emph{twistor spinor} or \emph{conformal Killing spinor} is a $\psi$ such that \begin{displaymath} \nabla_v \psi = \frac{1}{dim(X)} \gamma_v D \psi \,, \end{displaymath} where $D$ is the given [[Dirac operator]] (e.g. \hyperlink{Baum00}{Baum 00}). A Killing spinor with non-vanishing $\kappa$ may be understood as a genuine covariantly constant spinor, but with respect to a [[super-Cartan geometry]] modeled not on [[super-Euclidean space]]/[[super-Minkowski spacetime]], but on its spherical/hyperbolic or deSitter/anti-deSitter versions (\hyperlink{EgeilehChami13}{Egeileh-Chami 13, p. 60 (8/8)}). Similarly a \emph{[[Killing vector]]} is a covariantly constant [[vector field]]. Pairing two covariant constant spinors to a vector yields a Killing vector. In [[supergravity]], [[super spacetimes]] which solves the [[equations of motion]] and admit Killing spinors are \emph{[[BPS states]]} (at least if they are asymptotically flat and of finite mass). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Killing vector]] \item [[Killing tensor]] \item [[Killing-Yano tensor]] \item [[superisometry]] \item [[supersymmetry and Calabi-Yau manifolds]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Lecture notes include \begin{itemize}% \item \emph{Parallel and Killing spinor fields} ([[KillingSpinors.pdf:file]]) \item [[Helga Baum]], \emph{Twistor and Killing spinors in Lorentzian geometry}, S\'e{}minaires \& Congr\`e{}s, 4, 2000 (\href{http://www.emis.de/journals/SC/2000/4/pdf/smf_sem-cong_4_35-52.pdf}{pdf}) \item [[Helga Baum]], \emph{Conformal Killing spinors and the holonomy problem in Lorentzian geometry} (\href{http://www.mathematik.hu-berlin.de/~baum/publikationen-fr/Publikationen-ps-dvi/IMA06-neu.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item \"O{}zg\"u{}r A\c{c}k, \emph{Field equations from Killing spinors} (\href{https://arxiv.org/abs/1705.04685}{arXiv:1705.04685}) \end{itemize} Discussion relating to [[Killing vectors]] in [[supergeometry]] ([[superisometries]]) is in \begin{itemize}% \item [[Leonardo Castellani]], [[Riccardo D'Auria]], [[Pietro Fré]], pages 1198-1199 of \emph{[[Supergravity and Superstrings - A Geometric Perspective]]}, World Scientific (1991) \end{itemize} and later in \begin{itemize}% \item [[Dmitri Alekseevsky]], [[Vicente Cortés]], [[Chandrashekar Devchand]], [[Uwe Semmelmann]], \emph{Killing spinors are Killing vector fields in Riemannian Supergeometry} (\href{http://arxiv.org/abs/dg-ga/9704002}{arXiv:dg-ga/9704002}) \end{itemize} See also \begin{itemize}% \item [[Christian Bär]], \emph{Real Killing spinors and holonomy}, Comm. Math. Phys. Volume 154, Number 3 (1993), 509-521 (\href{https://projecteuclid.org/euclid.cmp/1104253076}{Euclid}) \end{itemize} Discussion regarding the conceptualization of Killing spinors in [[super-Cartan geometry]] is in \begin{itemize}% \item Michel Egeileh, Fida El Chami, \emph{Some remarks on the geometry of superspace supergravity}, J.Geom.Phys. 62 (2012) 53-60 (\href{http://inspirehep.net/record/1333125}{spire}) \end{itemize} Discussion relating to [[special holonomy]] includes \begin{itemize}% \item Andrei Moroianu, [[Uwe Semmelmann]], \emph{Parallel spinors and holonomy groups}, Journal of Mathematical Physics 41 (2000), 2395-2402 (\href{http://arxiv.org/abs/math/9903062}{arXiv:math/9903062}) \end{itemize} Discussion of classification includes \begin{itemize}% \item [[Thomas Friedrich]], \emph{Zur Existenz paralleler Spinorfelder \"u{}ber Riemannschen Mannigfaltigkeiten} Czechoslavakian-GDR-Polish scientific school on differential geometry Boszkowo/ Poland 1978, Sci. Comm., Part 1,2; 104-124 (1979) \item [[Thomas Friedrich]], \emph{Zur Existenz paralleler Spinorfelder \"u{}ber Riemannschen Mannigfaltigkeiten}, Colloquium Mathematicum vol. XLIV, Fasc. 2 (1981), 277-290. \end{itemize} \hypertarget{relation_to_supersymmetry}{}\subsubsection*{{Relation to supersymmetry}}\label{relation_to_supersymmetry} General discussion of Killing with an eye towards applications in [[supersymmetry]] is around page 907 in volume II of \begin{itemize}% \item [[Pierre Deligne]], P. Etingof, [[Dan Freed]], L. Jeffrey, D. Kazhdan, J. Morgan, D.R. Morrison and [[Edward Witten]], (eds.) \emph{Quantum Fields and Strings, A course for mathematicians}, 2 vols. Amer. Math. Soc. Providence 1999. (\href{http://www.math.ias.edu/qft}{web version}) \end{itemize} specifically in [[heterotic supergravity]]: \begin{itemize}% \item [[Ulf Gran]], [[George Papadopoulos]], Diederik Roest, \emph{Supersymmetric heterotic string backgrounds}, Phys.Lett.B656:119-126, 2007 (\href{https://arxiv.org/abs/0706.4407}{arXiv:0706.4407}) \end{itemize} in [[11-dimensional supergravity]]: \begin{itemize}% \item [[Jerome Gauntlett]], Stathis Pakis, \emph{The Geometry of $D=11$ Killing Spinors}, JHEP 0304 (2003) 039 (\href{http://arxiv.org/abs/hep-th/0212008}{arXiv:hep-th/0212008}) \end{itemize} for [[G2-structures]] in [[M-theory on G2-manifolds]]: \begin{itemize}% \item [[Thomas Friedrich]], Stefan Ivanov, \emph{Parallel spinors and connections with skew-symmetric torsion in string theory}, AsianJ.Math.6:303-336,2002 (\href{http://arxiv.org/abs/math/0102142}{arXiv:math/0102142}) \end{itemize} [[!redirects Killing spinors]] [[!redirects covariantly constant spinor]] [[!redirects covariantly constant spinors]] [[!redirects Killing spinor field]] [[!redirects Killing spinor fields]] [[!redirects parallel spinor]] [[!redirects parallel spinors]] [[!redirects twistor spinor]] [[!redirects twistor spinors]] [[!redirects parallel spinor field]] [[!redirects parallel spinor fields]] \end{document}