\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Klein-Gordon equation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{variational_calculus}{}\paragraph*{{Variational calculus}}\label{variational_calculus} [[!include variational calculus - contents]] \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{formal_selfadjointness}{Formal self-adjointness}\dotfill \pageref*{formal_selfadjointness} \linebreak \noindent\hyperlink{bicharacteristic_flow_and_propagation_of_singularities}{Bicharacteristic flow and propagation of singularities}\dotfill \pageref*{bicharacteristic_flow_and_propagation_of_singularities} \linebreak \noindent\hyperlink{FundamentalSolutions}{Fundamental solutions}\dotfill \pageref*{FundamentalSolutions} \linebreak \noindent\hyperlink{relation_to_schrdinger_equation}{Relation to Schr\"o{}dinger equation}\dotfill \pageref*{relation_to_schrdinger_equation} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Klein-Gordon equation} is the [[linear differential equation|linear]] [[partial differential equation]] which is the [[equation of motion]] of a [[free field|free]] [[scalar field|scalar]] [[field (physics)|field]] of possibly non-vanishing [[mass]] $m$ on some (possibly [[curved spacetime|curved]]) [[spacetime]] ([[Lorentzian manifold]]): it is the relativistic [[wave equation]] with inhomogenety the mass $m^2$. The structure of the Klein-Gordon equation appears also in the [[equations of motion]] of richer [[field (physics)|fields]] than just [[scalar fields]], where now the underlying [[field bundle]] may more generally be some [[vector bundle]]. Therefore the [[fundamental solutions]] of the Klein-Gordon equation, called the \emph{[[propagators]]} (see \hyperlink{FundamentalSolutions}{below}) pervades all of relativistic [[perturbative quantum field theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[spacetime]] $(X,g)$ (a [[pseudo-Riemannian manifold]]) and a [[real number]] $m \in \mathbb{R}_{\geq 0}$, then the \emph{Klein-Gordon equation} is the [[differential equation]] on [[smooth functions]] $\phi \colon X \to \mathbb{R}$ given by \begin{displaymath} \left( \Box_g - \left( \tfrac{m c}{\hbar} \right)^2 \right) \phi \;=\; 0 \,, \end{displaymath} where $\Box_g$ denotes the \emph{[[wave operator]]} on $(X,g)$ (the analog of the [[Laplace operator]] in [[Lorentzian geometry]]) and where $\tfrac{m c }{\hbar}$ is for the purpose of pure [[PDE]] theory just a [[real number]], while regarded as equipped with [[physical units]] it is the inverse \emph{[[Compton wavelength]]} for [[mass]] $m$. This is the [[equation of motion]] of the [[free field|free]] [[scalar field]] on $X$, of [[mass]] $m$ and subject to a [[background field]] of [[gravity]] as encoded in the metric $g$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} If $(X,g) = \mathbb{R}^{p,1}$ is [[Minkowski spacetime]] equipped with its canonical [[coordinate functions]] $x^0 = c t$ and $\{x^i\}_{i = 1}^p$, then the Klein-Gordon equation reads as follows (using [[Einstein summation convention]]) \begin{displaymath} \left( \eta^{\mu \nu} \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x^\nu} - \left( \tfrac{m c}{\hbar} \right)^2 \right) \phi \;=\; 0 \end{displaymath} hence \begin{displaymath} \left( -\tfrac{1}{c^2} \frac{\partial^2}{\partial t^2} + \underoverset{i = 1}{p}{\sum}\frac{\partial}{\partial x^i} \frac{\partial}{\partial x^i} - \left( \tfrac{m c}{\hbar} \right)^2 \right) \phi \;=\; 0 \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{formal_selfadjointness}{}\subsubsection*{{Formal self-adjointness}}\label{formal_selfadjointness} \begin{example} \label{FormallySelfAdjointKleinGordonOperator}\hypertarget{FormallySelfAdjointKleinGordonOperator}{} \textbf{([[Klein-Gordon operator]] is [[formal adjoint differential operator|formally self-adjoint]])} Let $\Sigma = \mathbb{R}^{p,1}$ be [[Minkowski spacetime]] with [[Minkowski metric]] $\eta$ and let $E \coloneqq \Sigma \times \mathbb{R}$ be the [[trivial line bundle]]. The canonical [[volume form]] $dvol_\Sigma$ induces an [[isomorphism]] $\tilde E^\ast \simeq E$. Consider then the [[Klein-Gordon operator]] \begin{displaymath} (\Box - m^2) \;\colon\; \Gamma_\Sigma(\Sigma \times \mathbb{R}) \longrightarrow \Gamma_\Sigma(\Sigma \times \mathbb{R}) \otimes \langle dvol_\Sigma\rangle \,. \end{displaymath} This is its own [[formal adjoint differential operator|formal adjoint]] witnessed by the bilinear differential operator given by \begin{displaymath} K(\Phi_1, \Phi_2) \;\coloneqq\; \left( \frac{\partial \Phi_1}{\partial x^\mu} \Phi_2 - \Phi_1 \frac{\partial \Phi_2}{\partial x^\mu} \right) \eta^{\mu \nu}\iota_{\partial_\nu} dvol_\Sigma \,. \end{displaymath} \end{example} \begin{proof} \begin{displaymath} \begin{aligned} d K(\Phi_1, \Phi_2) & = d \left( \frac{\partial \Phi_1}{\partial x^\mu} \Phi_2 - \Phi_1 \frac{\partial \Phi_2}{\partial x^\mu} \right) \eta^{\mu \nu}\iota_{\partial_\nu} dvol_\Sigma \\ &= \left( \left( \eta^{\mu \nu}\frac{\partial^2 \Phi_1}{\partial x^\mu \partial x^\nu} \Phi_2 + \eta^{\mu \nu} \frac{\partial \Phi_1}{\partial x^\mu} \frac{\partial \Phi_2}{\partial x^\nu} \right) - \left( \eta^{\mu \nu} \frac{\partial \Phi_1}{\partial x^\nu} \frac{\partial \Phi_2}{\partial x^\mu} + \Phi_1 \eta^{\mu \nu} \frac{\partial^2 \Phi_2}{\partial x^\nu \partial x^\mu} \right) \right) dvol_\Sigma \\ & = \left( \eta^{\mu \nu}\frac{\partial^2 \Phi_1}{\partial x^\mu \partial x^\nu} \Phi_2 - \Phi_1 \eta^{\mu \nu} \frac{\partial^2 \Phi_2}{\partial x^\nu \partial x^\mu} \right) dvol_\Sigma \\ & = \Box(\Phi_1) \Phi_2 - \Phi_1 \Box (\Phi_2) \end{aligned} \end{displaymath} \end{proof} \hypertarget{bicharacteristic_flow_and_propagation_of_singularities}{}\subsubsection*{{Bicharacteristic flow and propagation of singularities}}\label{bicharacteristic_flow_and_propagation_of_singularities} The [[bicharacteristic strips]] of the Klein-Gordon operator are [[cotangent vectors]] along [[lightlike]] [[geodesics]] (\href{bicharacteristic+flow#BicharachteristicFlowOfKleinGordonOperator}{this example}). \hypertarget{FundamentalSolutions}{}\subsubsection*{{Fundamental solutions}}\label{FundamentalSolutions} On a [[globally hyperbolic spacetime]] $M$ the Klein-Gordon equation has unique advanced and retarded [[Green functions]], $\Delta_R \in \mathcal{D}'(M\times M)$ and $\Delta_A \in \mathcal{D}'(M\times M)$ respectively. The [[advanced and Green functions]] are uniquely distinguished by their [[support of a distribution|support]] properties. Namely, $(x,y) \in \operatorname{supp} \Delta_R$ only if $x$ is in the [[causal future]] of $y$, while $(x,y) \in \operatorname{supp} \Delta_A$ only if $x$ is in the [[causal past]] of $y$. Their difference $\Delta_S = \Delta_R - \Delta_A$ is a bisolution known as the [[causal propagator]], which is the [[Peierls bracket]] which gives the [[Poisson bracket]] on the [[covariant phase space]] of the [[free field|free]] [[scalar field]]. This in turn defines the [[Wick algebra]] of the free scalar field, which yields the [[quantization]] of the free scalar field to a [[quantum field theory]]. Other important Green functions or bisolutions include any (anti-)[[Feynman propagator]] ($\Delta_{\bar{F}}$) $\Delta_F$ and [[Hadamard propagator]]. Unfortunately, it is not possible to identify them by a simple support condition. On Minkowski space, they are identified by the support of their Fourier transform. On curved spacetimes, there are two possibilities. One specifies the asymptotic expansion $\Delta(x,y)$ in a geodesically convex neighborhood of the diagonal $x=y$ to be of a special \emph{Hadamard form}. The other specifies constraints on the [[wavefront set]] $WF(\Delta)$. The possibilities were proven to be equivalent in \hyperlink{Radzikowski96}{Radzikowski 96}, which made essential use of the relevant notions of microlocal analysis and of \emph{distinguished parametrices} introduced in \hyperlink{DuistermaatHoermander72}{DuistermaatH\"o{}rmander 72}. According to \hyperlink{Radzikowski96}{Radzikowski 96}, the constraints on the wavefront sets of important Green functions and bisolutions can be diagrammatically illustrated as follows below. Note that the primed [[wavefront set]] of a distribution on $M\times M$ is defined as $WF'(\Delta) = \{ (x,y;p,-q) \in T^*(M\times M) \mid (x,y;p,q) \in WF(\Delta) \}$. The diagrams illustrate tuples $(x,y; p,q) \in T^*(M\times M)$, where the vertex of a cone corresponds to $y$ and the cone illustrates all points $x$ linked to $y$ by null geodesics; the arrows illustrate the allowed directions of $p$, with $p$ and $q$ linked by parallel transport and both tangent to null geodesic linking $x$ and $y$. [[!include propagators - table]] These propagators govern the construction of the [[Wick algebra]] of [[quantum observables]] of the [[free field|free]] [[scalar field]] on the given [[globally hyperbolic spacetime]], as well as the further [[deformation quantization]] to [[interaction|interacting]] [[perturbative quantum field theory]] [[quantum field theory on curved spacetimes|on curved spacetimes]] via [[causal perturbation theory]]. See at \emph{[[locally covariant perturbative quantum field theory]]} for more on this. \hypertarget{relation_to_schrdinger_equation}{}\subsubsection*{{Relation to Schr\"o{}dinger equation}}\label{relation_to_schrdinger_equation} Sometimes the Klein-Gordon equation is thought of as a [[general relativity|relativistic]] refinement of the [[Schrödinger equation]] (as one passes from the non-relativistic to the [[relativistic particle]]). But this requires some care. A priori the Klein-Gordon equation takes as arguments a [[field (physics)|field]] on [[spacetime]], whereas the Schr\"o{}dinger equation takes as argument a [[wave function]] on [[phase space]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[wave equation]], [[wave]] \item [[plane wave]] [[wave vector]], [[wavelength]], [[frequency]] \item [[Fourier analysis]] \item [[heat equation]] \item [[wave equation]] \item [[Schrödinger equation]] \item [[Dirac equation]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The Klein-Gordon equation is named after [[Oskar Klein]] and [[Walter Gordon]]. An overview over the KG [[propagators]] on [[Minkowski spacetime]] is given in \begin{itemize}% \item [[Mikica Kocic]], \emph{Invariant Commutation and Propagation Functions Invariant Commutation and Propagation Functions}, 2016 ([[KGPropagatorsOnMinkowskiTable.pdf:file]]) \end{itemize} The [[Hadamard propagator]] for the Klein-Gordon equation on general [[globally hyperbolic spacetimes]] was found in \begin{itemize}% \item [[Marek Radzikowski]], \emph{Micro-local approach to the Hadamard condition in quantum field theory on curved space-time}, Commun. Math. Phys. 179 (1996), 529--553 (\href{http://projecteuclid.org/euclid.cmp/1104287114}{Euclid}) \end{itemize} The original reference on the relevant notions of microlocal analysis and distinguished parametrices of the Klein-Gordon equation is \begin{itemize}% \item [[Johann Duistermaat]], [[Lars Hörmander]], \emph{Fourier integral operators. II}, Acta Mathematica 128 (1972), 183-269 (\href{http://dx.doi.org/10.1007/bf02392165}{doi}) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Christian Bär]], [[Nicolas Ginoux]], [[Frank Pfäffle]], \emph{Wave Equations on Lorentzian Manifolds and Quantization}, ESI Lectures in Mathematics and Physics, European Mathematical Society Publishing House, ISBN 978-3-03719-037-1, March 2007, Softcover (\href{https://arxiv.org/abs/0806.1036}{arXiv:0806.1036}) \item [[Nicolas Ginoux]], \emph{Linear wave equations}, Ch. 3 in [[Christian Bär]], [[Klaus Fredenhagen]], \emph{Quantum Field Theory on Curved Spacetimes: Concepts and Methods}, Lecture Notes in Physics, Vol. 786, Springer, 2009 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Klein%E2%80%93Gordon_equation}{Klein-Gordon equation}} \end{itemize} [[!redirects Klein-Gordon equations]] [[!redirects Klein-Gordon operator]] [[!redirects Klein-Gordon operators]] \end{document}