\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kleisli category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{kleisli_category}{}\section*{{Kleisli category}}\label{kleisli_category} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_free_algebras}{In terms of free algebras}\dotfill \pageref*{in_terms_of_free_algebras} \linebreak \noindent\hyperlink{in_terms_of_kleisli_morphisms}{In terms of Kleisli morphisms}\dotfill \pageref*{in_terms_of_kleisli_morphisms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{universal_properties}{Universal properties}\dotfill \pageref*{universal_properties} \linebreak \noindent\hyperlink{in_functional_programming}{In functional programming}\dotfill \pageref*{in_functional_programming} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[monad]] $T$ on some [[category]] $\mathcal{C}$, then its \emph{Kleisli category} is the [[full subcategory]] of the [[Eilenberg-Moore category]] of $T$, hence the category of [[algebras over a monad|T-algebras]], on those that are \emph{[[free construction|free]]} [[algebra for a monad|T-algebras]] (free $T$-[[modules]]). Explicitly one may describe the \emph{Kleisli category} of $T$ to have as [[objects]] the objects of $\mathcal{C}$, and a morphism $X \to Y$ in the Kleisli category is a morphism in $\mathcal{C}$ of the form $X \to T(Y)$ in $\mathcal{C}$. The monad structure induces a natural [[composition]] of such ``$T$-shifted'' morphisms. The Kleisli category is also characterized by the following [[universal property]]: Since every [[adjunction]] gives rise to a [[monad]] on the [[domain]] of its [[left adjoint]], we might ask if every monad may be construed as arising from an adjunction. This is in fact true, and the [[initial object|initial]] such adjunction in the [[adjoint functor\#RelationToMonads|category of adjunctions]] for the given monad has the Kleisli category as the codomain of its left adjoint. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathbf{T}=(T,\mu,\eta)$ be a [[monad]] in [[Cat]], where $T:C\to C$ is an [[endofunctor]] with multiplication $\mu:T T\to T$ and unit $\eta:Id_C\to T$. \hypertarget{in_terms_of_free_algebras}{}\subsubsection*{{In terms of free algebras}}\label{in_terms_of_free_algebras} \begin{defn} \label{}\hypertarget{}{} A \textbf{free $\mathbf{T}$-[[algebra|algebra over a monad]]} (or free $\mathbf{T}$-module) is a $\mathbf{T}$-algebra (module) of the form $(T(M),\mu_M)$, where the [[action]] is the component of multiplication transformation $\mu_M : T(T(M))\to T(M)$. \end{defn} \begin{defn} \label{}\hypertarget{}{} The \textbf{Kleisli category} $C_{\mathbf{T}}$ of the monad $\mathbf{T}$ the [[subcategory]] of the [[Eilenberg-Moore category]] $C^{\mathbf{T}}$ on the free $\mathbf{T}$-algebras. \end{defn} \begin{remark} \label{}\hypertarget{}{} If $U:C^{\mathbf{T}}\to C$ is the [[forgetful functor]] and $F: C\to C^{\mathbf{T}}$ is the [[free functor|free algebra functor]] $F: M\mapsto (T M,\mu_M)$, then the Kleisli category is simply the [[full subcategory]] of $C^{\mathbf{T}}$ containing those objects in the image of $F$. \end{remark} \hypertarget{in_terms_of_kleisli_morphisms}{}\subsubsection*{{In terms of Kleisli morphisms}}\label{in_terms_of_kleisli_morphisms} As another way of looking at this, we can keep the same objects as in $C$ but redefine the morphisms. This was the original Kleisli construction: \begin{defn} \label{}\hypertarget{}{} The \textbf{Kleisli category} $C_{\mathbf{T}}$ has as objects the objects of $C$, and as [[morphisms]] $M\to N$ the elements of the [[hom-set]] $C(M,T(N))$, in other words [[morphisms]] of the form $M \to T(N)$ in $C$, called \textbf{Kleisli morphisms}. Composition is given by the \textbf{Kleisli composition} rule $g\circ_{Kleisli} f = \mu_P\circ T(g)\circ f$ (as in the [[Grothendieck construction]] (here $M\stackrel{f}\to N\stackrel{g}\to P$). \end{defn} \begin{remark} \label{}\hypertarget{}{} More explicitly, this means that the Kleisli-composite of $f : x \to T y$ with $g : y \to T z$ is the morphism \begin{displaymath} x \stackrel{f}{\to} T y \stackrel{T g}{\to} T T z \stackrel{\mu z}{\to} T z \,. \end{displaymath} \end{remark} \begin{proof} The equivalence between both presentations amounts to the functor $C_{T} \to C^{T}$ being full and faithful. This functor maps any object $X$ to $T(X)$, and any morphism $f \colon X \to T(Y)$ to $T(X) \stackrel{T(f)}{\to} T^2(Y) \stackrel{\mu_Y}{\to} T(Y)$. Fullness holds because any morphism $g \colon T(X) \to T(Y)$ of algebras has as antecedent the composite $X \stackrel{\eta_X}{\to} T(X) \stackrel{g}{\to} T(Y)$. Indeed, the latter is mapped by the functor into $\mu_Y \circ T(g) \circ T(\eta_X)$, which because $g$ is a morphism of algebras is equal to $g \circ \mu_X \circ T(\eta_X)$, i.e., $g$. Faithfulness holds as follows: if $\mu_Y \circ T(f) = \mu_Y \circ T(g)$, then precomposing by $\eta_X$ yields $\mu_Y \circ T(f) \circ \eta_X = \mu_Y \circ \eta_{T(Y)} \circ f = f$ and similarly for $g$, hence $f = g$. \end{proof} \begin{remark} \label{}\hypertarget{}{} This Kleisli composition plays an important role in [[computer science]]; for this, see the article at [[monad (in computer science)]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{universal_properties}{}\subsubsection*{{Universal properties}}\label{universal_properties} In more general 2-categories the [[universal properties]] of [[Kleisli objects]] are dual to the universal properties of [[Eilenberg-Moore category\#Definition|Eilenberg-Moore objects]]. In particular, $C_{\mathbf{T}}$ is [[initial object|initial]] in the [[adjoint functor\#RelationToMonads|category of adjunctions]] for $\mathbf{T}$ (whereas $C^{\mathbf{T}}$ is [[terminal objects|terminal]]). For a proof, see \emph{[[Category Theory in Context]]} Proposition 5.2.12. \hypertarget{in_functional_programming}{}\subsubsection*{{In functional programming}}\label{in_functional_programming} In [[type theory|typed]] [[functional programming]], the Kleisli category is used to model [[call-by-value]] functions with side-effects and [[computation]]. See at \emph{[[monad (in computer science)]]} for more on this. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Kleisli object]] \item [[Kleisli 2-category]] \item [[monad (in computer science)]] \item [[co-Kleisli category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original source is \begin{itemize}% \item H. Kleisli, \emph{Every standard construction is induced by a pair of adjoint functors} , Proc. Amer. Math. Soc. \textbf{16} (1965) pp.544--546. (\href{http://www.ams.org/journals/proc/1965-016-03/S0002-9939-1965-0177024-4/}{AMS}) \item Jen\"o{} Szigeti, \emph{On limits and colimits in the Kleisli category}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, 24 no. 4 (1983), p. 381-391 (\href{http://www.numdam.org/item?id=CTGDC_1983__24_4_381_0}{NUMDAM}) \end{itemize} Discussion of cases where the inclusion of the Kleisli category into the [[Eilenberg-Moore category]] is a [[reflective subcategory]] is in \begin{itemize}% \item [[Marcelo Fiore]], [[Matias Menni]], \emph{Reflective Kleisli subcategories of the category of Eilenberg-Moore algebras for factorization monads}, Theory and Applications of Categories, Vol. 15, CT2004, No. 2, pp 40-65. (\href{http://www.tac.mta.ca/tac/volumes/15/2/15-02abs.html}{TAC}) \end{itemize} Discussion in [[internal category]] theory is in \begin{itemize}% \item Tomasz Brzeziski, Adrian Vazquez-Marquez, \emph{Internal Kleisli categories}, Journal of Pure and Applied Algebra Volume 215, Issue 9, September 2011, Pages 2135--2147 (\href{http://arxiv.org/abs/0911.4048}{arXiv:0911.4048}) \end{itemize} Discussion of Kleisli categories in [[type theory]] is in \begin{itemize}% \item Alex Simpson, \emph{Recursive types in Kleisli Categories} (\href{http://reference.kfupm.edu.sa/content/r/e/recursive_types_in_kleisli_categories__1738763.pdf}{pdf}) \end{itemize} [[!redirects Kleisli category]] [[!redirects Kleisli categories]] [[!redirects Kleisli morphism]] [[!redirects Kleisli function]] [[!redirects Kleisli morphisms]] [[!redirects Kleisli functions]] [[!redirects Kleisli composition]] \end{document}