\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kochen-Specker theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{kochenspecker_theorem}{Kochen-Specker theorem}\dotfill \pageref*{kochenspecker_theorem} \linebreak \noindent\hyperlink{sheaftheoretic_interpretation}{Sheaf-theoretic interpretation}\dotfill \pageref*{sheaftheoretic_interpretation} \linebreak \noindent\hyperlink{related_theorems}{Related theorems}\dotfill \pageref*{related_theorems} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[quantum mechanics]], the \emph{Kochen-Specker theorem} -- developed in 1967 by [[Simon Kochen]] and [[Ernst Specker]] -- is a [[no-go theorem]] that places limits on the types of [[hidden variable theories]] that may be used to explain the (apparent) [[probability theory|probabilistic]] nature of [[quantum mechanics]] in a causal way. It roughly asserts that it is impossible to assign values to all physical [[observables]] while simultaneously preserving the functional relations between them. It is a complement to [[Bell's theorem]], developed by [[John Bell]] in 1964, and is related to [[Gleason's theorem]], proven by (\hyperlink{Gleason57}{Gleason (1957)}) (who incidentally is the person who communicated the original Kochen-Specker paper to the \emph{Journal of Mathematics and Mechanics} ). Later in (\hyperlink{ButterfieldHamiltonIsham}{Butterfield-Hamilton-Isham 98}) it was observed that the Kochen-Specker theorem is equivalent to the statement that the [[spectral presheaf]] has no [[global elements]], which led to the proposal that the [[phase space]] in [[quantum mechanics]] is naturally to be understood as a ([[ringed topos|ringed]]) [[topos]], the ``[[Bohr topos]]''. \hypertarget{kochenspecker_theorem}{}\subsection*{{Kochen-Specker theorem}}\label{kochenspecker_theorem} \begin{defn} \label{Valuation}\hypertarget{Valuation}{} Let $B(\mathcal{H})$ be the algebra of [[bounded operator]]s on some [[Hilbert space]] $\mathcal{H}$. (In physics $\mathcal{H}$ is the space of states of a [[quantum mechanics|quantum mechanical]] system, and the elements $\hat A \in B(\mathcal{H})$ represent quantum observables.) A \textbf{valuation} on $B(\mathcal{H})$ is a [[function]] \begin{displaymath} \lambda : B(\mathcal{H}) \to \mathbb{R} \end{displaymath} to the [[real number]]s, satisfying two conditions: \begin{enumerate}% \item \emph{value rule} -- the value $\lambda(\hat{A})$ belongs to the spectrum of $\hat{A}$; \item \emph{functional composition principle} (FUNC) -- for any pair of [[self-adjoint operators]] $\hat{A}$, $\hat{B}$ such that $\hat{B}=h(\hat{A})$ for some real-valued function $h$ we have $\lambda(\hat{B})=h(\lambda(\hat{A}))$. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} This has the following equivalent reformulationo, which is crucial for the sheaf-theoretic interpretation discussed below. Observed that if $\hat{A}_{1}$ and $\hat{A}_{2}$ commute, then it follows from the [[spectral theorem]] that there exists an operator $\hat{C}$ and [[continuous functions]] $h_{1}$ and $h_{2}$ such that $\hat{A}_{1}=h_{1}(\hat{C})$ and $\hat{A}_{2}=h_{2}(\hat{C})$. Then the [[axiom]] FUNC in def. \ref{Valuation} implies that a valuation satisfies \begin{displaymath} \lambda(\hat{A}_{1} + \hat{A}_{2}) = \lambda(\hat{A}_{1}) + \lambda(\hat{A}_{2}) \end{displaymath} and \begin{displaymath} \lambda(\hat{A}_{1}\hat{A}_{2})=\lambda(\hat{A}_{1})\lambda(\hat{A}_{2}) \,, \end{displaymath} hence that on [[poset of commutative subalgebras|commutative subalgebras]] it is a [[ring]] [[homomorphism]]. Therefore a valuation as in def. \ref{Valuation} is equivalently a function on the algebra which is an algebra homomorphism on each [[poset of commutative subalgebras|commutative subalgebra]]. (Observe the difference to [[quasi-states]] ([[quantum states]]), which are positive linear functions on commutative subalgebras, not necessarily respecting the ring structure.) \end{remark} Now we have: \begin{theorem} \label{}\hypertarget{}{} \textbf{(Kochen-Specker)} No valuations on $B(\mathcal{H})$ exist if dim($\mathcal{H}$){\tt \symbol{62}}2. \end{theorem} \begin{remark} \label{}\hypertarget{}{} If a valuation \emph{did} exist and was restricted to a [[poset of commutative subalgebras|commutative sub-algebra of operators]], it would be an element of the [[Gelfand spectrum]] of the commutative sub-algebra. Since such elements \emph{do} exist, valuations do exist on any commutative sub-algebra of operators even if not on the whole \emph{non}-commutative algebra, $\mathcal{B}(\mathcal{H})$, of all bounded operators. Isham calls these valuations on commutative subalgebras \emph{local}. In the [[Bohr topos]] of the algebra of observables (see there for more), the local valuation are just the [[internal language|internal]] valuations. \end{remark} \hypertarget{sheaftheoretic_interpretation}{}\subsection*{{Sheaf-theoretic interpretation}}\label{sheaftheoretic_interpretation} [[Chris Isham]] and [[Jeremy Butterfield]] gave a [[topos theory|topos theoretic]] reformulation of the Kochen-Specker theorem as follows. \begin{defn} \label{}\hypertarget{}{} \textbf{(category of contexts)} Let $\mathcal{V}(\mathcal{H})$ be a [[category]] (the [[poset of commutative subalgebras]] of the algebra $B(\mathcal{H})$ of [[bounded operator]]s) whose \begin{itemize}% \item [[object]]s are \emph{commutative} [[von Neumann algebra|von Neumann subalgebras]] $V \subset B(\mathcal{H})$; \item [[morphism]]s $V_1 \to V_2$ are inclusions $V_1 \subset V_2$. \end{itemize} \end{defn} Isham calls this the \textbf{category of (classical) contexts} of $B(\mathcal{H})$. Each commutative algebra is viewed as a context within which to view a quantum system in an essentially classical way in the sense that the physical quantities in any such algebra can be given consistent values (as they can in a classical context). These classical contexts were maybe first amplified by [[Niels Bohr]] as being the contexts through which all of [[quantum mechanics]] is to be perceived. (Therefore the word ``[[Bohr topos]]'' for the concept that is meant to formalize this perspective of Bohr.) \begin{defn} \label{}\hypertarget{}{} \textbf{(spectral presheaf)} Let $\Sigma : \mathcal{V}(\mathcal{B})^{op} \to Set$ be the [[presheaf]] on the category of context such that \begin{itemize}% \item to $V \subset B(\mathcal{H})$ it assigned the set underlying the spectrum of $V$: the set of multiplicative [[linear functional]]s $\kappa : V \to \mathbb{R}$; \item to an inclusion $i : V_1 \hookrightarrow V_2$ it assigns the corresponding function $i^* : \Sigma(V_2) \to \Sigma(V_1)$ that sends a functional $V_2 \stackrel{\kappa}{\to} \mathbb{R}$ to its restriction $V_1 \hookrightarrow V_2 \stackrel{\kappa}{\to} \mathbb{R}$. \end{itemize} This is called the \emph{[[spectral presheaf]]}. \end{defn} Recall that the [[terminal object]], $* = 1_{Set^{\mathcal{V}(\mathcal{H})^{op}}}$ in the [[category of presheaves]] on $\mathcal{V}(\mathcal{H})$ is the [[presheaf]] that assigns the singleton set $*$ (the [[terminal object]] in [[Set]]) to each commutative algebra. A [[global element]] of the spectral presheaf $\Sigma$ is a morphism $e : * \to \Sigma$ in the presheaf topos. Being a [[natural transformation]] of functors, such a global element $\lambda : 1_{Set^{\mathcal{V}(\mathcal{H})^{op}}} \to \underline{\Sigma}$ of the spectral presheaf, would associate an element of the [[Gelfand spectrum]] of an algebra $V$ to that algebra such that all local valuations are global, i.e. for $V \subseteq W$ valuations on $V$ are local valuations on $W$ but global on $V$. Because a multiplicative linear functional $\kappa : V \to\mathbb{R}$ satisfies the axioms of a valuation, def. \ref{Valuation}, when restricted to the self-adjoint elements of $V$. By the Kochen-Specker theorem these cannot exist, hence a global element of $\Sigma$ cannot exist. Hence we have: \begin{prop} \label{}\hypertarget{}{} (Hamilton, Isham, Butterfield) The Kochen-Specker theorem is equivalent to the statement that the [[spectral presheaf]] $\Sigma$ of the algebra of bounded operators has no [[global elements]] if the dimension of the Hilbert space is greater than 2. \end{prop} (\hyperlink{ButterfieldHamiltonIsham}{Butterfield-Hamilton-Isham 98}) For more see at \emph{[[Bohr topos]]}. \hypertarget{related_theorems}{}\subsection*{{Related theorems}}\label{related_theorems} \begin{itemize}% \item [[beable]] \end{itemize} Other theorems about the foundations of [[quantum mechanics]] include: \begin{itemize}% \item [[order-theoretic structure in quantum mechanics]] \begin{itemize}% \item [[Gleason's theorem]] \item [[Alfsen-Shultz theorem]] \item [[Harding-Döring-Hamhalter theorem]] \end{itemize} \item [[Bell's theorem]] \item [[Wigner theorem]] \item [[Bub-Clifton theorem]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Bohr topos]] \item [[interpretation of quantum mechanics]] \begin{itemize}% \item [[hidden variable theory]] \end{itemize} \item [[Bell's inequalities]] \end{itemize} Other theorems about the foundations and [[interpretation of quantum mechanics]] include: \begin{itemize}% \item [[order-theoretic structure in quantum mechanics]] \begin{itemize}% \item [[Alfsen-Shultz theorem]] \item [[Harding-Döring-Hamhalter theorem]] \end{itemize} \item [[Fell's theorem]] \item [[Gleason's theorem]] \item [[Wigner theorem]] \item [[Bell's theorem]] \item [[Bub-Clifton theorem]] \item [[Kadison-Singer problem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[Simon Kochen]], [[Ernst Specker]], \emph{The problem of hidden variables in quantum mechanics} , Journal of Mathematics and Mechanics 17, 59--87 (1967), (\href{http://www.iumj.indiana.edu/IUMJ/FTDLOAD/1968/17/17004/pdf}{pdf}) \end{itemize} Alternative proofs are in \begin{itemize}% \item Del Rajan, Matt Visser, \emph{Kochen-Specker theorem revisited} (\href{https://arxiv.org/abs/1708.01380}{arXiv:1708.01380}) \end{itemize} The sheaf-theoretic interpretation of the theorem was proposed in \begin{itemize}% \item [[Chris Isham]], [[Jeremy Butterfield]], \emph{A topos perspective on the Kochen-Specker theorem: I. Quantum States as Generalized Valuations} (\href{http://arxiv.org/abs/quant-ph/9803055}{arXiv:quant-ph/9803055}) \end{itemize} The formulation in terms of presheaves on the category of commutative sub-algebra of $B(\mathcal{H})$ was proposed in part III of \begin{itemize}% \item [[Jeremy Butterfield]], John Hamilton, [[Chris Isham]], \emph{A topos perspective on the Kochen-Specker theorem}, \emph{I. quantum states as generalized valuations}, Internat. J. Theoret. Phys. 37(11):2669--2733, 1998, \href{http://www.ams.org/mathscinet-getitem?mr=1669557}{MR2000c:81027}, \href{http://dx.doi.org/10.1023/A:1026680806775}{doi}; \emph{II. conceptual aspects and classical analogues} Int. J. of Theor. Phys. 38(3):827--859, 1999, \href{http://www.ams.org/mathscinet-getitem?mr=1697983}{MR2000f:81012}, \href{http://dx.doi.org/10.1023/A:1026652817988}{doi}; \emph{III. Von Neumann algebras as the base category}, Int. J. of Theor. Phys. 39(6):1413--1436, 2000, \href{http://arxiv.org/abs/quant-ph/9911020}{arXiv:quant-ph/9911020}, \href{http://www.ams.org/mathscinet-getitem?mr=1788498}{MR2001k:81016},\href{http://dx.doi.org/10.1023/A:1003667607842}{doi}; \emph{IV. Interval valuations}, Internat. J. Theoret. Phys. \textbf{41} (2002), no. 4, 613--639, \href{http://www.ams.org/mathscinet-getitem?mr=1902067}{MR2003g:81009}, \href{http://dx.doi.org/10.1023/A:1015276209768}{doi} \end{itemize} The original paper outlining [[Bell's theorem]] is \begin{itemize}% \item J. S. Bell, \emph{On the Einstein Podolsky Rosen Paradox} , Physics, \href{http://www.drchinese.com/David/Bell_Compact.pdf}{pdf}. \end{itemize} The original paper outlining [[Gleason's theorem]] is \begin{itemize}% \item A. M. Gleason, \emph{Measures on the closed subspaces of a Hilbert space}, Journal of Mathematics and Mechanics, Indiana Univ. Math. J. 6 No. 4 (1957), 885--893 (\href{http://www.iumj.indiana.edu/IUMJ/FULLTEXT/1957/6/56050}{web}) \end{itemize} A technical discussion on the interplay of Gleason's and Kochen-Specker theorems and various issues regarding non-contextuality, locality and Bell inequality appears in Chapter 5 of \begin{itemize}% \item [[Valter Moretti]], Fundamental Mathematical Structures of Quantum Theory: Spectral Theory, Foundational Issues, Symmetries, Algebraic Formulation Springer (2019) \end{itemize} The hierarchy of strengths of no-go theorems in quantum context is studied from sheaf theoretic perspective in \begin{itemize}% \item [[Samson Abramsky]], Adam Brandenburger, \emph{The sheaf-theoretic structure of non-locality and contextuality}, \href{https://arxiv.org/abs/1102.0264}{arxiv/1102.0264} \end{itemize} \end{document}