\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Koszul complex} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{Koszul complex} of a sequence of elements $(x_1, \cdots, x_d)$ in a [[commutative ring]] $R$ (or more generally of [[center|central]] elements in a [[non-commutative ring]]) is a [[cochain complex]] whose entry in degree $-n$ is the [[exterior power]] $\wedge^n R^d$ of the [[free module]] $R^d = R^{\oplus_d}$ over $R$ of [[rank]] $d$, and whose [[differential]] is given in each degree on the $k$th summand by multiplication with $x_k$. The key property of the Koszul complex is that in good cases (namely if the sequence $(x_1, \cdots, x_d)$ is a [[regular sequence]] in $R$), it constitutes is a [[free resolution|free]] [[homological resolution]] of the [[quotient]] $R/(x_1, \cdots, x_d)$ of $R$ by the [[ideal]] generated by these elements (see prop. \ref{KoszulComplexOfRegularSequenceIsFreeResolutionOfQuotientRing} below). In cases where the Koszul complex fails to be a [[homological resolution]] of the [[quotient ring]], it may be augmented by further generators to yield a resolution after all then called a \emph{[[Koszul-Tate resolution]]}. From the perspective of [[derived algebraic geometry]] the Koszul complex may be interpreted as the [[formal duality|formal dual]] of the [[derived critical locus]] of the elements $(x_1, \cdots, x_d)$, regarded as functions on the [[spectrum of a ring|spectrum]] $Spec(R)$. In this guise the Koszul complex appears prominently in [[Lagrangian field theory]], under the name \emph{[[BV-complex]]}, as a potential [[homological resolution]] of the \emph{[[shell]]} (the solution locus of the [[Euler-Lagrange equations|Euler-Lagrange]] [[equations of motion]]). In this case the obstruction to the Koszul complex providing a resolution of the shell is its cochain cohomology in degree -1 (via prop. \ref{KoszulResolutionForNoetherianRngAndElementsInJacobson} below) which has the interpretation as the [[infinitesimal gauge symmetries]] of the [[Lagrangian density]] that have not been made explicit. Making them explicit by promoting them to elements in the [[Chevalley-Eilenberg algebra]] of the corresponding [[action Lie algebroid]] yields what is called the \emph{[[BRST complex]]} of the theory, and \emph{its} Koszul complex then yields the respective [[Koszul-Tate resolution]], now called the \emph{[[BV-BRST complex]]} of the theory. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $R$ be a [[unital ring]]. Consider also a finite [[sequence]] $(x_1,\ldots,x_r)$ of [[elements]] $x_i \in R$. Given any [[center|central element]] $x\in Z(R)$, one can define a two term [[cochain complex]] \begin{displaymath} K(x) \coloneqq (0\to R\stackrel{x}\to R\to 0) \end{displaymath} concentrated in degrees $0$ and $1$, where the map (the [[differential]]) is the left multiplication by $x$. Given a sequence $(x_1,\ldots,x_r)$ of central elements in $R$ one can define the tensor product \begin{displaymath} K(x_1,\ldots,x_r) \coloneqq K(x_1)\otimes_R K(x_2)\otimes_R\cdots \otimes_R K(x_r) \end{displaymath} of complexes of left $R$-[[modules]]. The degree $p$ part of $K(x_1,\ldots,x_r)$ equals the [[exterior power]] $\Lambda^{p+1}R^r$. Consider the usual [[basis]] elements $e_{i_0}\wedge \cdots \wedge e_{i_p}$ of $\Lambda^{p+1}R^r$, where $1\leq i_0\lt i_1\lt\cdots\lt i_p\leq r$. Then the differential is given by \begin{displaymath} d(e_{i_0}\wedge \cdots \wedge e_{i_p}) = \sum_{k = 0}^{p}(-1)^{k+1} x_{i_k} e_{i_0}\wedge \cdots\wedge \hat{e}_{i_k} \wedge \cdots\wedge e_{i_r} \end{displaymath} The differential can be obtained from the faces of the obvious Koszul [[semi-simplicial object|semi-simplicial]] $R$-[[module]] and the cochain complex above is obtained by the usual alternating sum rule. Now let $A$ be a finitely generated left $R$-module. Then the abelian [[chain homology]] [[abelian group|groups]] \begin{displaymath} H_q(x_1,\ldots,x_r; A) = H_q(K(x_1,\ldots,x_r)\otimes_R A), \end{displaymath} \begin{displaymath} H^q(x_1,\ldots,x_r;A) = H^q(Hom_R(K(x_1,\ldots,x_r),A)), \end{displaymath} together with [[connecting homomorphisms]], form a homological and cohomological [[delta-functor]] (in the sense of [[nlab:Tohoku]]) respectively, deriving the zero parts \begin{displaymath} H_0 = A/(x_1,\ldots,x_r)A \end{displaymath} \begin{displaymath} H^0 = Hom_R(R/(x_1,\ldots,x_r)R,A) \end{displaymath} where $(x_1,\ldots,x_r)A$ is the left $R$-submodule generated by $x_1,\ldots,x_r$. A Poincare-like duality holds: $H_p(x_1,\ldots,x_r;A) = H^{r-p}(x_1,\ldots,x_r;A)$. The sequence $\mathbf{x} = (x_1,\ldots,x_r)$ is called \textbf{$A$-regular} (or regular on $A$) if for all $i$ the image of $x_i$ in $A/(x_1,\ldots,x_{i-1})A$ annihilates only zero. This terminology is in accord with calling a non-zero divisor in a ring a ``regular element'' (and is in accord with the terminology regular local rings). If $\mathbf{x}$ is a regular sequence on/in $R$ then $K(\mathbf{x},R)$ is a free resolution of the module $R/(x_1,\ldots,x_r)R$ and the cohomology $H^q(x_1,\ldots,x_r;A) = Ext^q_R(R/(x_1,\ldots,x_r)R,A)$ while [[Koszul homology]] is $H_q(x_1,\ldots,x_r;A) = Tor_q^R(R/(x_1,\ldots,x_r)R,A)$. The resolution of $R/(x_1,\ldots,x_r)R$ can be written \begin{displaymath} 0 \to \Lambda^r(R^r)\to \cdots \to \Lambda^2(R^r)\to R^r \to R \to R/(x_1,\ldots,x_r)R\to 0 \end{displaymath} and the $R$-linear map $R^r\to R$ is given by the row vector $(x_1,\ldots,x_r)$. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \begin{prop} \label{KoszulComplexOfRegularSequenceIsFreeResolutionOfQuotientRing}\hypertarget{KoszulComplexOfRegularSequenceIsFreeResolutionOfQuotientRing}{} \textbf{(Koszul complex of [[regular sequence]] is [[free resolution]] of [[quotient ring]])} Let $R$ be a [[commutative ring]] and $(x_1, \cdots, x_d)$ a [[regular sequence]] of elements in $R$. Then the Koszul complex $K(x_1,\cdots, x_d)$ is a [[free resolution]] of the [[quotient ring]] $R/(x_1, \cdots, x_d)$. \end{prop} \begin{prop} \label{KoszulResolutionForNoetherianRngAndElementsInJacobson}\hypertarget{KoszulResolutionForNoetherianRngAndElementsInJacobson}{} \textbf{(Koszul resolution detected in degree (-1))} Let $R$ be a [[commutative ring]] and $(x_1, \cdots, x_d)$ a [[sequence]] of elements in $R$, such that \begin{enumerate}% \item $R$ is [[Noetherian ring|Noetherian]]; \item each $x_i$ is contained in the [[Jacobson radical]] of $R$ \end{enumerate} then the following are equivalent: \begin{enumerate}% \item the [[cochain cohomology]] of the Koszul complex $K(x_1, \cdots, x_d)$ vanishes in degree $-1$; \item the Koszul complex $K(x_1, \cdots, x_d)$ is a [[free resolution]] of the [[quotient ring]] $R/(x_1, \cdots, x_d)$, hence its [[cochain cohomology]] vanishes in all degrees $\leq -1$; \item the sequence $(x_1, \cdots, x_d)$ is a [[regular sequence]]. \end{enumerate} \end{prop} A \textbf{proof} is spelled out on \href{https://en.wikipedia.org/wiki/Koszul_complex#Properties_of_a_Koszul_homology}{Wikipedia - Properties of Koszul homology} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{KoszulComplexForFormalPowerSeriesAlgebras}\hypertarget{KoszulComplexForFormalPowerSeriesAlgebras}{} \textbf{(Koszul complex for formal power series algebras)} Let $k$ be a [[field]], let $R = k[ [ X_1,\cdots, X_n ] ]$ be a [[formal power series algebra]] over $k$ in $n$ [[variables]], and let $(f_1, \cdots, f_r)$ be formal power series whose constant term vanishes. Then the Koszul complex is a homological resolution precisely already if its cohomology in degree -1 vanishes \begin{displaymath} \left( H^{-1}(K(f_1, \cdots, f_n)) = 0 \right) \;\Leftrightarrow\; \left( K(f_1, \cdots, f_n) \overset{\simeq_{qi}}{\longrightarrow} k[ [X_1, \cdots X_n] ]/(f_1, \cdots, f_r) \right) \,. \end{displaymath} This is because the assumptions of prop. \ref{KoszulResolutionForNoetherianRngAndElementsInJacobson} are met: A formal power series ring over a field is Noetherian (\href{noetherian+ring#PolynomialAlgebraOverNoetherianRingIsNoetherian}{this example}) and an element of a formal power series algebra is in the Jacobson radical precisely if its constant term vanishes (\href{Jacobson+radical#JacobsonRadicalOfFormalPowerSeriesAlgebra}{this example}). \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Koszul-Tate resolution]] \item [[syzygy]] \item [[BV-formalism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original reference is \begin{itemize}% \item [[Jean-Louis Koszul]], \emph{Homologie et cohomologie des alg\`e{}bres de Lie} , Bulletin de la Soci\'e{}t\'e{} Math\'e{}matique de France, 78, 1950, pp 65-127. \end{itemize} A standard textbook reference is \begin{itemize}% \item [[Charles Weibel]], section 4.5 of \emph{Homological algebra} (\href{http://www.math.unam.mx/javier/weibel.pdf}{pdf}) \end{itemize} A generalization of Koszul complexes to (appropriate resolutions of) [[algebras over operads]] is in \begin{itemize}% \item Joan Mill\`e{}s, \emph{The Koszul complex is the cotangent complex}, MPIM2010-32, \href{http://www.mpim-bonn.mpg.de/preprints/send?bid=4143}{pdf} \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Koszul_complex}{Koszul complex}} \end{itemize} [[!redirects Koszul complexes]] \end{document}