\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Kronecker pairing} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{UniversalCoefficientTheorem}{Universal coefficient theorem}\dotfill \pageref*{UniversalCoefficientTheorem} \linebreak \noindent\hyperlink{pairing_on_atiyahhirzebruch_spectral_sequences}{Pairing on Atiyah-Hirzebruch spectral sequences}\dotfill \pageref*{pairing_on_atiyahhirzebruch_spectral_sequences} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[ordinary homology]]/[[ordinary cohomology]] represented as [[singular homology]]/[[singular cohomology]], then \emph{Kronecker pairing} refers to the defining pairing of a [[chain]] with a [[cochain]]. More generally, in [[generalized (Eilenberg-Steenrod) cohomology]]/[[generalized homology]] represented by a [[ring spectrum]] $E$, then the \emph{Kronecker pairing} is a canonical pairing of the $E$-[[generalized cohomology]] [[cohomology group|groups]] $E^\bullet(X)$ with the $E$-[[generalized homology]] groups $E_\bullet(X)$ of suitable spaces ([[homotopy types]]/[[spectra]]) $X$ \begin{displaymath} \langle-,-\rangle_X \;\colon\; E^{\bullet_1}(X) \otimes E_{\bullet_2}(X) \longrightarrow \pi_{\bullet_2-\bullet_1}(E) \,. \end{displaymath} The combination of the Kronecker pairing with a [[diagonal]] map yields the [[cap product]] pairing in generalized (co-)homology. If $E_\bullet(X)$ is a [[projective module|projective]] [[graded module]] over the [[graded ring]] $\pi_\bullet(E)$ then the [[adjunct]] \begin{displaymath} E^0(X) \longrightarrow Hom_{\pi_\bullet(E)}(E_\bullet(X), \pi_\bullet(E)) \end{displaymath} of the Kronecker pairing is an [[isomorphism]] and hence exhibits $E$-[[generalized cohomology]] as the $\pi_\bullet(E)$-[[linear dual]] of the $E$-[[generalized homology]] of $X$; an instance of a [[universal coefficient theorem]] for generalized (co-)homology (prop. \ref{KroneckerPairingAdjunctIsIsomorphism} below). On [[CW-complexes]] $X$ of [[finite number|finite]] [[dimension]], the Kronecker pairing induces a pairing of the corresponding [[Atiyah-Hirzebruch spectral sequences]] (prop. \ref{KroneckerPairingOnAHSS} below). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $E$ be a [[ring spectrum]] with product denoted $\mu \colon E \wedge E \longrightarrow E$. Let $X,Y$ be any [[spectra]]. \begin{defn} \label{KroneckerPairing}\hypertarget{KroneckerPairing}{} Given $[f] \in E^k(X)$ with representative $f \colon X \longrightarrow \Sigma^k E$ and given $[w] \in E_{n+k}(X \wedge Y)$ with representative $w \colon S^{n+k} \longrightarrow E \wedge X \wedge Y$, then their \emph{Kronecker pairing} is the element \begin{displaymath} \langle f,w\rangle \in E_n(Y) \end{displaymath} represented by the composite \begin{displaymath} S^{k+n} \stackrel{w}{\longrightarrow} E\wedge X \wedge Y \stackrel{id_E \wedge f \wedge id_Y}{\longrightarrow} E \wedge \Sigma^k E \wedge Y \stackrel{\Sigma^k \mu \wedge id_Y}{\longrightarrow} \Sigma^k E \wedge Y \,. \end{displaymath} This yields a homomorphism of [[graded abelian groups]] \begin{displaymath} \langle-,-\rangle \;\colon\; E^{\bullet_1}(X) \otimes E_{\bullet_2}(X \wedge Y) \longrightarrow E_{\bullet_2-\bullet_1}(Y) \,. \end{displaymath} (and similarly for $Y$ on the other side\ldots{}) For $Y = \mathbb{S}$ this is \begin{displaymath} \langle-,-\rangle \;\colon\; E^{\bullet_1}(X) \otimes E_{\bullet_2}(X) \longrightarrow \pi_{\bullet_2-\bullet_1}(E) \,. \end{displaymath} \end{defn} (e.g. \hyperlink{Kochmann96}{Kochmann 96, (4.2.1)}, \hyperlink{Schwede12}{Schwede 12, construction 6.13}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{UniversalCoefficientTheorem}{}\subsubsection*{{Universal coefficient theorem}}\label{UniversalCoefficientTheorem} \begin{prop} \label{KroneckerPairingAdjunctIsIsomorphism}\hypertarget{KroneckerPairingAdjunctIsIsomorphism}{} If $E_\bullet(X)$ is a [[projective module|projective]] [[graded module]] over the [[graded ring]] $\pi_\bullet(E)$ then the [[adjunct]] \begin{displaymath} \pi_0[X, E \wedge Y] \longrightarrow Hom_{\pi_\bullet(E)}( E_\bullet(X), E_\bullet(Y) ) \end{displaymath} \begin{displaymath} f \mapsto \langle f,-\rangle \end{displaymath} of the Kronecker pairing, def. \ref{KroneckerPairing}, is an [[isomorphism]]. \end{prop} (e.g. \hyperlink{Schwede12}{Schwede 12, chapter II, prop.6.20}) \begin{proof} By the formula for [[adjuncts]], the morphism factors through the [[free-forgetful adjunction]] for $E$-[[module spectra]] \begin{displaymath} \pi_0[X, E \wedge Y] \stackrel{\simeq}{\longrightarrow} \pi_0[E\wedge X, E \wedge Y]_{E Mod} \stackrel{\pi_\bullet}{\longrightarrow} Hom_{\pi_\bullet}( E_\bullet(X), E_\bullet(Y) ) \,. \end{displaymath} Hence one is reduced to showing that under the given conditions the second morphis is an iso. (\ldots{}) \end{proof} This may be regarded as a [[universal coefficient theorem]] (\hyperlink{Adams74}{Adams 74, part III, around prop. 13.5}). For $Y = \mathbb{S}$ prop. \ref{KroneckerPairingAdjunctIsIsomorphism} gives: \begin{example} \label{}\hypertarget{}{} If $E_\bullet(X)$ is a [[projective module|projective]] [[graded module]] over the [[graded ring]] $\pi_\bullet(E)$ then the [[adjunct]] \begin{displaymath} E^0(X) \longrightarrow Hom_{\pi_\bullet(E)}( E_\bullet(X), \pi_\bullet(E) ) \end{displaymath} \begin{displaymath} f \mapsto \langle f,-\rangle \end{displaymath} of the Kronecker pairing, def. \ref{KroneckerPairing}, is an [[isomorphism]]. \end{example} \hypertarget{pairing_on_atiyahhirzebruch_spectral_sequences}{}\subsubsection*{{Pairing on Atiyah-Hirzebruch spectral sequences}}\label{pairing_on_atiyahhirzebruch_spectral_sequences} \begin{prop} \label{KroneckerPairingOnAHSS}\hypertarget{KroneckerPairingOnAHSS}{} For $E$ a [[ring spectrum]] and $X$ a [[CW complex]] of [[finite number|finite]] [[dimension]], then the Kronecker pairing $\langle -,-\rangle \colon E^\bullet(X)\otimes E_\bullet(X)\to \pi_\bullet(E)$ of def. \ref{KroneckerPairing} passes to a page-wise pairing of the corresponding [[Atiyah-Hirzebruch spectral sequences]] for $E$-cohomology/homology \begin{displaymath} \langle-,-\rangle_r \;\colon\; \mathcal{E}_r^{n,-s} \otimes \mathcal{E}^r_{n,t} \longrightarrow \pi_{s+t}(E) \end{displaymath} such that \begin{enumerate}% \item on the $\mathcal{E}_2$-page this restricts to the Kronecker pairing for [[ordinary cohomology]]/[[ordinary homology]] with [[coefficients]] in $\pi_\bullet(E)$; \item the [[differentials]] act as [[derivations]] \begin{displaymath} \langle d_r(-),-\rangle = \langle -, d^r(-)\rangle \,, \end{displaymath} \item The pairing on the $\mathcal{E}_\infty$-page is compatible with the Kronecker pairing. \end{enumerate} \end{prop} (\hyperlink{Kochmann96}{Kochmann 96, prop. 4.2.10}) \hypertarget{references}{}\subsection*{{References}}\label{references} Presumeably named after [[Leopold Kronecker]]. \begin{itemize}% \item [[Frank Adams]], Part III, section 13 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Stanley Kochman]], (4.2.1) and prop. 4.2.10 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Stefan Schwede]], chapter II, section 6 of \emph{[[Symmetric spectra]]}, 2012 (\href{http://www.math.uni-bonn.de/~schwede/SymSpec-v3.pdf}{pdf}) \end{itemize} \end{document}