\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{L-infinity algebras in physics} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The concept of [[L-∞ algebras]] as [[graded vector spaces]] equipped with $n$-ary brackets satisfying a generalized [[Jacobi identity]] was introduced in generality in \begin{itemize}% \item [[Jim Stasheff]], \emph{Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras}, in \emph{Quantum groups} Number 1510 in Lecture Notes in Math. Springer, Berlin, 1992 \item [[Tom Lada]], [[Jim Stasheff]], \emph{Introduction to sh Lie algebras for physicists}, Int. J. Theo. Phys. 32 (1993), 1087--1103. (\href{http://arxiv.org/abs/hep-th/9209099}{arXiv:hep-th/9209099}) \item [[Tom Lada]], [[Martin Markl]], \emph{Strongly homotopy Lie algebras} Communications in Algebra Volume 23, Issue 6, (1995) (\href{http://arxiv.org/abs/hep-th/9406095}{arXiv:hep-th/9406095}) \end{itemize} These authors were following \hyperlink{Zwiebach92}{Zwiebach 92}, who had found in his work on [[closed string field theory]] that the [[n-point functions]] equip the [[BRST complex]] of the [[closed string|closed]] [[bosonic string]] with such a structure. Zwiebach in turn was following the [[BV-formalism]] due to \hyperlink{BatalinVilkovisky83}{Batalin-Vilkovisky 83}, \hyperlink{BatakinFradkin83}{Batakin-Fradkin 83} See also at \emph{\href{L-infinity-algebra#History}{L-infinity algebra -- History}}. A discussion in terms of [[resolutions]] of the [[Lie operad]] is for instance in \begin{itemize}% \item [[Igor Kriz]], [[Peter May]], \emph{Operads, algebras, modules and motives} (\href{http://www.math.uchicago.edu/~may/PAPERS/kmbooklatex.pdf}{pdf}) \end{itemize} A historical survey is \begin{itemize}% \item [[Jim Stasheff]], \emph{Higher homotopy structures, then and now}, talk at \emph{\href{https://www.mpim-bonn.mpg.de/node/6356}{Opening workshop}} of \emph{\href{https://www.mpim-bonn.mpg.de/node/5883}{Higher Structures in Geometry and Physics}}, MPI Bonn 2016 ([[StasheffHomotopyStructuresReview.pdf:file]]) \end{itemize} See also \begin{itemize}% \item Marilyn Daily, \emph{$L_\infty$-structures}, PhD thesis, 2004 (\href{http://www.lib.ncsu.edu/resolver/1840.16/5282}{web}) \item Klaus Bering, [[Tom Lada]], \emph{Examples of Homotopy Lie Algebras} Archivum Mathematicum (\href{http://arxiv.org/abs/0903.5433}{arXiv:0903.5433}) \end{itemize} A detailed reference for [[Lie 2-algebras]] is: \begin{itemize}% \item [[John Baez]] and Alissa Crans, \emph{Higher-dimensional algebra VI: Lie 2-algebras}, \href{http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html}{TAC} 12, (2004), 492--528. (\href{http://arxiv.org/abs/math/0307263}{arXiv:math/0307263}) \end{itemize} \hypertarget{as_models_for_rational_homotopy_types}{}\subsubsection*{{As models for rational homotopy types}}\label{as_models_for_rational_homotopy_types} That $L_\infty$-algebras are models for [[rational homotopy theory]] is implicit in \href{rational+homotopy+theory#Quillen69}{Quillen 69} (via their \href{model+structure+on+dg-Lie+algebras#RectificationResolution}{equivalence with dg-Lie algebras}) and was made explicit in \hyperlink{Hinich98}{Hinich 98}. Exposition is in \begin{itemize}% \item [[Urtzi Buijs]], [[Yves Félix]], [[Aniceto Murillo]], section 2 of \emph{$L_\infty$-rational homotopy of mapping spaces} (\href{https://arxiv.org/abs/1209.4756}{arXiv:1209.4756}), published as \emph{$L_\infty$-models of based mapping spaces}, J. Math. Soc. Japan Volume 63, Number 2 (2011), 503-524. \end{itemize} and genralization to non-[[connected topological space|connected]] rational spaces is discussed in \begin{itemize}% \item [[Urtzi Buijs]], [[Aniceto Murillo]], \emph{Algebraic models of non-connected spaces and homotopy theory of $L_\infty$-algebras}, Advances in Mathematics 236 (2013): 60-91. (\href{https://arxiv.org/abs/1204.4999}{arXiv:1204.4999}) \end{itemize} \hypertarget{ReferencesInPhysics}{}\subsubsection*{{$L_\infty$-algebras in physics}}\label{ReferencesInPhysics} The following lists, mainly in chronological order of their discovery, [[L-∞ algebra]] structures appearing in [[physics]], notably in [[supergravity]], [[BV-BRST formalism]], [[deformation quantization]], [[string theory]], higher [[Chern-Simons theory]]/[[AKSZ sigma-models]] and [[local field theory]]. For more see also at \emph{[[higher category theory and physics]]}. \hypertarget{in_supergravity}{}\paragraph*{{In supergravity}}\label{in_supergravity} In their equivalent [[formal dual]] guise of [[Chevalley-Eilenberg algebras]] (see \hyperlink{ReformulationInTermsOfSemifreeDGAlgebra}{above}), $L_\infty$-algebras of [[finite type]] -- in fact [[super L-∞ algebras]] -- appear in pivotal role in the [[D'Auria-Fré formulation of supergravity]] at least since \begin{itemize}% \item [[Riccardo D'Auria]], [[Pietro Fré]], \emph{[[GeometricSupergravity.pdf:file]]}, Nuclear Physics B201 (1982) 101-140 \end{itemize} In the [[supergravity]] literature these CE-algebras are referred to as ``FDA''s. This is short for ``free differential algebra'', which is a slight misnomer for what in mathematics are called [[semifree dga]]s (or sometimes ``quasi-free'' dga-s). The translation of [[D'Auria-Fré formulation of supergravity|D'Auria-Fré formalism]] to explicit ([[super L-∞ algebra|super]]) $L_\infty$-algebra language is made in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], example 5 in section 6.5.1, p. 54 of \emph{L-infinity algebra connections and applications to String- and Chern-Simons n-transport}, in Quantum Field Theory, Birkh\"a{}user (2009) 303-424 (\href{http://arxiv.org/abs/0801.3480}{arXiv:0801.3480}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The brane bouquet|Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields]]}, International Journal of Geometric Methods in Modern Physics Volume 12, Issue 02 (2015) 1550018 (\href{http://arxiv.org/abs/1308.5264}{arXiv:1308.5264}) \end{itemize} connecting them to the [[higher WZW terms]] of the [[Green-Schwarz sigma models]] of fundamental [[super p-branes]] ([[schreiber:The brane bouquet]]). Further exposition of this includes \begin{itemize}% \item [[Urs Schreiber]], \emph{\href{https://www.physicsforums.com/insights/homotopy-lie-n-algebras-supergravity/}{Homotopy Lie n-algebras in Supergravity}}, PhysicsForums-Insights 2015 \end{itemize} See also at \emph{[[supergravity Lie 3-algebra]]}, and \emph{[[supergravity Lie 6-algebra]]}. Notice that there is a \emph{different} concept of ``Filipov [[n-Lie algebra]]'' suggested in (\href{BLG+model#BaggerLambert06}{Bagger-Lambert 06}) to play a role in the description of the [[conformal field theory]] in the [[near horizon limit]] of [[black p-branes]], notably the [[BLG model]] for the conformal [[worldvolume]] theory on the [[M2-brane]] . A realization of thse ``Filippov $3$-Lie algebras'' as 2-term $L_\infty$-algebras ([[Lie 2-algebras]]) equipped with a binary [[invariant polynomial]] (``metric Lie 2-algebras'') is in \begin{itemize}% \item Sam Palmer, [[Christian Saemann]], section 2 of \emph{M-brane Models from Non-Abelian Gerbes}, JHEP 1207:010, 2012 (\href{http://arxiv.org/abs/1203.5757}{arXiv:1203.5757}) \item [[Patricia Ritter]], [[Christian Saemann]], section 2.5 of \emph{Lie 2-algebra models}, JHEP 04 (2014) 066 (\href{http://arxiv.org/abs/1308.4892}{arXiv:1308.4892}) \end{itemize} based on \begin{itemize}% \item Paul de Medeiros, [[José Figueroa-O'Farrill]], [[Elena Méndez-Escobar]], [[Patricia Ritter]], \emph{On the Lie-algebraic origin of metric 3-algebras}, Commun.Math.Phys.290:871-902,2009 (\href{http://arxiv.org/abs/0809.1086}{arXiv:0809.1086}) \end{itemize} See also \begin{itemize}% \item [[José Figueroa-O'Farrill]], section \emph{Triple systems and Lie superalgebras} in \emph{M2-branes, ADE and Lie superalgebras}, talk at IPMU 2009 (\href{http://www.maths.ed.ac.uk/~jmf/CV/Seminars/Hongo.pdf}{pdf}) \end{itemize} \hypertarget{ReferencesBVBRSTFormalism}{}\paragraph*{{In BV-BRST formalism}}\label{ReferencesBVBRSTFormalism} The introduction of [[BV-BRST complexes]] as a model for the [[derived critical locus]] of the [[action functionals]] of [[gauge theories]] is due to \begin{itemize}% \item [[Igor Batalin]], [[Grigori Vilkovisky]], \emph{Gauge Algebra and Quantization}, Phys. Lett. B 102 (1981) 27--31. doi:10.1016/0370-2693(81)90205-7 \item [[Igor Batalin]], [[Grigori Vilkovisky]], \emph{Feynman rules for reducible gauge theories}, Phys. Lett. B 120 (1983) 166-170. doi:10.1016/0370-2693(83)90645-7 \item [[Igor Batalin]], [[Efim Fradkin]], \emph{A generalized canonical formalism and quantization of reducible gauge theories}, Phys. Lett. B122 (1983) 157-164. \item [[Igor Batalin]], [[Grigori Vilkovisky]], \emph{Quantization of Gauge Theories with Linearly Dependent Generators}, Phys. Rev. D 28 (10): 2567--258 (1983) doi:10.1103/PhysRevD.28.2567. Erratum-ibid. 30 (1984) 508 doi:10.1103/PhysRevD.30.508 \end{itemize} as reviewed in \begin{itemize}% \item [[Marc Henneaux]], [[Claudio Teitelboim]], \emph{[[Quantization of Gauge Systems]]}, Princeton University Press 1992. xxviii+520 pp. \item [[Joaquim Gomis]], J. Paris, S. Samuel, \emph{Antibrackets, Antifields and Gauge Theory Quantization} (\href{http://arxiv.org/abs/hep-th/9412228}{arXiv:hep-th/9412228}) \end{itemize} The understanding that these [[BV-BRST complexes]] mathematically are the [[formal dual]] [[Chevalley-Eilenberg algebra]] of a [[derived L-∞ algebroid]] originates around \begin{itemize}% \item [[Jim Stasheff]], \emph{Homological Reduction of Constrained Poisson Algebras}, J. Differential Geom. Volume 45, Number 1 (1997), 221-240 (\href{http://arxiv.org/abs/q-alg/9603021}{arXiv:q-alg/9603021}, \href{https://projecteuclid.org/euclid.jdg/1214459757}{Euclid}) \item [[Jim Stasheff]], \emph{The (secret?) homological algebra of the Batalin-Vilkovisky approach} (\href{http://arxiv.org/abs/hep-th/9712157}{arXiv:hep-th/9712157}) \end{itemize} Discussion in terms of homotopy [[Lie-Rinehart pairs]] is due to \begin{itemize}% \item [[Lars Kjeseth]], \emph{Homotopy Rinehart cohomology of homotopy Lie-Rinehart pairs}, Homology Homotopy Appl. Volume 3, Number 1 (2001), 139-163. (\href{https://projecteuclid.org/euclid.hha/1140370269}{Euclid}) \end{itemize} The [[L-∞ algebroid]]-structure is also made explicit in (\href{http://arxiv.org/abs/0910.4001v1}{def. 4.1 of v1}) of (\hyperlink{SatiSchreiberStasheff09}{Sati-Schreiber-Stasheff 09}). \hypertarget{in_string_field_theory}{}\paragraph*{{In string field theory}}\label{in_string_field_theory} The first \emph{explicit} appearance of $L_\infty$-algebras in theoretical physics is the $L_\infty$-algebra structure on the [[BRST complex]] of the [[closed string|closed]] [[bosonic string]] found in the context of closed bosonic [[string field theory]] in \begin{itemize}% \item [[Barton Zwiebach]], \emph{Closed string field theory: Quantum action and the B-V master equation} , Nucl.Phys. B390 (1993) 33 (\href{http://arxiv.org/abs/hep-th/9206084}{arXiv:hep-th/9206084}) \item [[Jim Stasheff]], \emph{Closed string field theory, strong homotopy Lie algebras and the operad actions of moduli space} Talk given at the \emph{Conference on Topics in Geometry and Physics} (1992) (\href{http://arxiv.org/abs/hep-th/9304061}{arXiv:hep-th/9304061}) \end{itemize} Generalization to open-closed bosonic string field theory yields [[L-∞ algebra]] interacting with [[A-∞ algebra]]: \begin{itemize}% \item [[Hiroshige Kajiura]], \emph{Homotopy Algebra Morphism and Geometry of Classical String Field Theory} (2001) (\href{http://arxiv.org/abs/hep-th/0112228}{arXiv:hep-th/0112228}) \item [[Hiroshige Kajiura]], [[Jim Stasheff]], \emph{Homotopy algebras inspired by classical open-closed string field theory}, Comm. Math. Phys. 263 (2006) 553--581 (2004) (\href{http://arxiv.org/abs/math/0410291}{arXiv:math/0410291}) \item [[Martin Markl]], \emph{Loop Homotopy Algebras in Closed String Field Theory} (1997) (\href{http://arxiv.org/abs/hep-th/9711045}{arXiv:hep-th/9711045}) \end{itemize} See also \begin{itemize}% \item [[Jim Stasheff]], \emph{Higher homotopy algebras: String field theory and Drinfeld's quasiHopf algebras}, proceedings of \emph{International Conference on Differential Geometric Methods in Theoretical Physics}, 1991 (\href{https://inspirehep.net/record/327712}{spire}) \end{itemize} For more see at \emph{\href{string%20field%20theory#ReferencesHomotopyAlgebra}{string field theory -- References -- Relation to A-infinity and L-infinity algebras}}. \hypertarget{in_deformation_quantization}{}\paragraph*{{In deformation quantization}}\label{in_deformation_quantization} The general solution of the [[deformation quantization]] problem of [[Poisson manifolds]] due to \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Deformation quantization of Poisson manifolds}, Lett. Math. Phys. \textbf{66} (2003), no. 3, 157--216, (\href{http://arxiv.org/abs/q-alg/9709040}{arXiv:q-alg/9709040}). \end{itemize} makes crucial use of [[L-∞ algebra]]. Later it was understood that indeed [[L-∞ algebras]] are equivalently the universal model for infinitesimal [[deformation theory]] (of anything), also called [[formal moduli problems]]: \begin{itemize}% \item [[Vladimir Hinich]], \emph{DG coalgebras as formal stacks} (\href{http://arxiv.org/abs/math/9812034}{arXiv:9812034}) \item [[Jacob Lurie]], \emph{[[Formal Moduli Problems]]} \item [[Jonathan Pridham]], \emph{Unifying derived deformation theories}, Adv. Math. 224 (2010), no.3, 772-826 (\href{http://arxiv.org/abs/0705.0344}{arXiv:0705.0344}) \end{itemize} \hypertarget{in_heterotic_string_theory}{}\paragraph*{{In heterotic string theory}}\label{in_heterotic_string_theory} Next it was again $L_\infty$-algebras of [[finite type]] that drew attention. It was eventually understood that the [[string structures]] which embody a refinement of the [[Green-Schwarz anomaly cancellation]] mechanism in [[heterotic string theory]] have a further smooth refinement as [[G-structures]] for the [[string 2-group]], which is the [[Lie integration]] of a [[Lie 2-algebra]] called the \emph{[[string Lie 2-algebra]]}. This is due to \begin{itemize}% \item [[John Baez]], [[Alissa Crans]], [[Urs Schreiber]], [[Danny Stevenson]], \emph{From loop groups to 2-groups}, \emph{Homotopy, Homology and Applications} \textbf{9} (2007), 101-135. (\href{http://arxiv.org/abs/math.QA/0504123}{arXiv:math.QA/0504123}) \item [[André Henriques]], \emph{Integrating $L_\infty$ algebras}, Compos. Math. \textbf{144} (2008), no. 4, 1017--1045 (\href{http://dx.doi.org/10.1112/S0010437X07003405}{doi},\href{http://arxiv.org/abs/math.AT/0603563}{math.AT/0603563}) \end{itemize} and the relation to the Green-Schwarz mechanism is made explicit in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Twisted Differential String and Fivebrane Structures]]}, Communications in Mathematical Physics, 2012, Volume 315, Issue 1, pp 169-213 (\href{http://arxiv.org/abs/0910.4001}{arXiv:0910.4001}) \end{itemize} This article also observes that an analogous situation appears in [[dual heterotic string theory]] with the \emph{[[fivebrane Lie 6-algebra]]} in place of the string Lie 2-algebra. \hypertarget{higher_chernsimons_field_theory_and_aksz_sigmamodels}{}\paragraph*{{Higher Chern-Simons field theory and AKSZ sigma-models}}\label{higher_chernsimons_field_theory_and_aksz_sigmamodels} Ordinary [[Chern-Simons theory]] for a simple gauge group is all controled by a [[Lie algebra cohomology|Lie algebra 3-cocycle]]. The generalization of Chern-Simons theory to [[AKSZ-sigma models]] was understood to be encoded by [[symplectic Lie n-algebroids]] (later re-popularized as ``[[shifted symplectic structures]]'') in \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{Courant algebroids, derived brackets and even symplectic supermanifolds} PhD thesis (\href{http://arxiv.org/abs/math/9910078}{arXiv:9910078}) \item [[Pavol Ševera]], \emph{[[Some title containing the words ``homotopy'' and ``symplectic'', e.g. this one]]}, based on a talk at ``Poisson 2000'', CIRM Marseille, June 2000; (\href{http://arxiv.org/abs/math/0105080}{arXiv:0105080}) \item [[Dmitry Roytenberg]], \emph{On the structure of graded symplectic supermanifolds and Courant algebroids} in \emph{Quantization, Poisson Brackets and Beyond} , [[Theodore Voronov]] (ed.), Contemp. Math., Vol. 315, Amer. Math. Soc., Providence, RI, 2002 (\href{http://arxiv.org/abs/math/0203110}{arXiv}) \item [[Dmitry Roytenberg]], \emph{AKSZ-BV Formalism and Courant Algebroid-induced Topological Field Theories} Lett.Math.Phys.79:143-159,2007 (\href{http://arxiv.org/abs/hep-th/0608150}{arXiv:hep-th/0608150}). \end{itemize} The globally defined AKSZ action functionals obtained this way were shown in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:AKSZ Sigma-Models in Higher Chern-Weil Theory]]}, Int. J. Geom. Methods Mod. Phys. 10 (2013) 1250078 (\href{http://arxiv.org/abs/1108.4378}{arXiv:1108.4378}) \end{itemize} to be a special case of the higher Lie integration process of \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech cocycles for differential characteristic classes]]}, Advances in Theoretical and Mathematical Physics, Volume 16 Issue 1 (2012), pages 149-250 (\href{http://arxiv.org/abs/1011.4735}{arXiv:1011.4735}) \end{itemize} Further exmaples of non-symplectic $L_\infty$-Chern-Simons theory obtained this way include [[7-dimensional Chern-Simons theory]] on [[differential string structure|string 2-connections]]: \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:7d Chern-Simons theory and the 5-brane|Multiple M5-branes, String 2-connections, and 7d nonabelian Chern-Simons theory]]}, Advances in Theoretical and Mathematical Physics, Volume 18, Number 2 (2014) p. 229--321 \end{itemize} \hypertarget{in_local_prequantum_field_theory}{}\paragraph*{{In local prequantum field theory}}\label{in_local_prequantum_field_theory} Infinite-dimensional $L_\infty$-algebras that behaved similar to [[Poisson bracket]] [[Lie algebras]] -- \emph{[[Poisson bracket Lie n-algebras]]} -- were noticed \begin{itemize}% \item [[Chris Rogers]], \emph{$L_\infty$ algebras from multisymplectic geometry} , Letters in Mathematical Physics April 2012, Volume 100, Issue 1, pp 29-50 (\href{http://arxiv.org/abs/1005.2230}{arXiv:1005.2230}, \href{http://link.springer.com/article/10.1007%2Fs11005-011-0493-x}{journal}). \item [[Chris Rogers]], \emph{Higher symplectic geometry} PhD thesis (2011) (\href{http://arxiv.org/abs/1106.4068}{arXiv:1106.4068}) \end{itemize} In \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:L-∞ algebras of local observables from higher prequantum bundles ]]}, Homology, Homotopy and Applications, Volume 16 (2014) Number 2, p. 107 -- 142 (\href{http://arxiv.org/abs/1304.6292}{arXiv:1304.6292}) \end{itemize} these were shown to be the infinitesimal version of the symmetries of [[prequantum n-bundles]] as they appear in [[local prequantum field theory]], in higher generalization of how the [[Poisson bracket]] is the Lie algebra of the [[quantomorphism group]]. These also encode a homotopy refinement of the [[Dickey bracket]] on [[Noether theorem|Noether]] [[conserved currents]] which for [[Green-Schwarz sigma models]] reduces to Lie $n$-algebras of [[BPS charges]] which refine [[super Lie algebras]] such as the [[M-theory super Lie algebra]]: \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Lie n-algebras of BPS charges]]} (\href{http://arxiv.org/abs/1507.08692}{arXiv:1507.08692}) \item [[Igor Khavkine]], [[Urs Schreiber]], \emph{[[schreiber:Lie n-algebras of higher Noether currents ]]} \end{itemize} This makes concrete the suggestion that there should be $L_\infty$-algebra refinements of the [[Dickey bracket]] of [[conserved currents]] in [[local field theory]] that was made in \begin{itemize}% \item [[Glenn Barnich]], [[Ronald Fulp]], [[Tom Lada]], [[Jim Stasheff]], \emph{The sh Lie structure of Poisson brackets in field theory} (\href{http://arxiv.org/abs/hep-th/9702176}{arXiv:hep-th/9702176}) \end{itemize} Comprehesive survey and exposition of this situation is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Higher Prequantum Geometry]]}, in [[Gabriel Catren]], [[Mathieu Anel]] (eds.), \emph{\href{https://ncatlab.org/nlab/show/New+Spaces+for+Mathematics+and+Physics}{New Spaces for Mathematics and Physics}}, 2016 \end{itemize} \hypertarget{in_perturbative_quantum_field_theory}{}\paragraph*{{In perturbative quantum field theory}}\label{in_perturbative_quantum_field_theory} Further identification of [[L-∞ algebras]]-[[structure]] in the [[Feynman amplitudes]]/[[S-matrix]] of [[Lagrangian field theory|Lagrangian]] [[perturbative quantum field theory]]: \begin{itemize}% \item [[Markus Fröb]], \emph{Anomalies in time-ordered products and applications to the BV-BRST formulation of quantum gauge theories} \href{https://dx.doi.org/10.1007/s00220-019-03558-6}{Communications in Mathematical Physics} 2019 (online first) (\href{https://arxiv.org/abs/1803.10235}{arXiv:1803.10235}) \item [[Alex Arvanitakis]], \emph{The $L_\infty$-algebra of the S-matrix} (\href{https://arxiv.org/abs/1903.05643}{arXiv:1903.05643}) \end{itemize} \hypertarget{in_double_field_theory}{}\paragraph*{{In double field theory}}\label{in_double_field_theory} In [[double field theory]]: \begin{itemize}% \item [[Andreas Deser]], [[Jim Stasheff]], \emph{Even symplectic supermanifolds and double field theory}, Communications in Mathematical Physics November 2015, Volume 339, Issue 3, pp 1003-1020 (\href{http://arxiv.org/abs/1406.3601}{arXiv:1406.3601}) \item [[Olaf Hohm]], [[Barton Zwiebach]], \emph{$L_\infty$ Algebras and Field Theory} (\href{https://arxiv.org/abs/1701.08824}{arXiv:1701.08824}) \end{itemize} \hypertarget{related_expositions}{}\subsubsection*{{Related expositions}}\label{related_expositions} \begin{itemize}% \item [[fiber bundles in physics]] \item [[higher category theory and physics]] \item [[string theory FAQ]] \item [[motives in physics]] \item [[Hilbert's sixth problem]] \item [[model theory and physics]] \item [[motivation for sheaves, cohomology and higher stacks]] \item [[applications of (higher) category theory]] \item [[motivation for higher differential geometry]] \item [[motivation for cohesion]] \end{itemize} \end{document}