\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lagrangian correspondence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Lagrangian correspondence} is a [[correspondence]] between two [[symplectic manifolds]] $(X_i,\omega_i)$ given by a [[Lagrangian submanifold]] of their [[product]] $(X_1 \times X_2, p_1^\ast \omega_1 - p_2^\ast \omega_2)$. The [[graph of a function|graph]] of any [[symplectomorphism]] induces a Lagragian correspondence. Lagrangian correspondences are supposed to form, subject to some technicalities, the [[morphisms]] of a [[category]] to be called the \emph{[[symplectic category]]}. When [[symplectic geometry]] is used to model [[mechanics]] in [[physics]], then a [[symplectic manifold]] $(X,\omega)$ encodes the [[phase space]] of a [[mechanical system]] and a [[symplectomorphism]] \begin{displaymath} \phi \;\colon\; (X_1,\omega_1) \to (X_2, \omega_2) \end{displaymath} encodes a process undergone by this system, for instance the time evolution induced by a [[Hamiltonian vector field]]. In particular if this is a [[Hamiltonian symplectomorphism]] then this is traditionally called a \emph{[[canonical transformation]]} in physics. Therefore Lagrangian correspondence have also been called \emph{canonical relations} (\hyperlink{Weinstein83}{Weinstein 83, p. 5}). \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{}\hypertarget{}{} For $(X_j, \omega_j)$ two [[symplectic manifold]]s, a \textbf{Lagrangian correspondence} is a [[correspondence]] $Z \to X^-_0 \times X_1$ which is a [[submanifold]] of $X^-_0 \times X_1$ \begin{displaymath} \iota : L_{0,1} \hookrightarrow X^-_0 \times X_1 \end{displaymath} with $dim(L_{0,1}) = \frac{1}{2}(dim(X_0) + dim(X_1))$ and \begin{displaymath} \iota^*(-\pi_0^* \omega_0 + \pi_1^* \omega_1) = 0 \,, \end{displaymath} where $\pi_i$ are the two projections out of the [[product]]. \end{defn} \begin{defn} \label{}\hypertarget{}{} The \textbf{composition} of two Lagrangian correspondences is \begin{displaymath} L_{01} \circ L_{12} := \pi_{02}(L_{01} \times_{X_1} L_{12}) \end{displaymath} which is itself a Lagrangian correspondence in $X^-_0 \times X_2$ if everything is suitably smoothly embedded by $\pi_{02}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} The category of Lagrangian correspondences is a [[full subcategory]] of that of correspondence of the [[slice topos]] $SmoothSpaces_{/\Omega^2_{cl}}$ of [[smooth spaces]] over the [[moduli space]] $\Omega^2_{cl}$ of closed [[differential 2-forms]]: a [[symplectic manifold]] $(X,\omega)$ is given by a map of [[smooth spaces]] $\omega \colon X \to \Omega^2_{cl}$ (generally this is a [[presymplectic manifold]]) and a correspondence in $SmoothSpaces_{/\Omega^2_{cl}}$ is a [[commuting diagram]] in [[smooth spaces|SmoothSpaces]] of the form \begin{displaymath} \itexarray{ && Z \\ & {}^{\mathllap{i_1}}\swarrow && \searrow^{\mathrlap{i_2}} \\ X_1 && {i_1^\ast \omega_1 = i_2^\ast \omega_2} && X_2 \\ & {}_{\mathllap{\omega_1}}\searrow && \swarrow_{\mathrlap{\omega_2}} \\ && \Omega^2_{cl} } \,. \end{displaymath} If here $(i_1, i_2) \colon Z \to X \times Y$ is a manifold maximal with the property of fitting into the above diagram, then this is a Lagrangian correspondence. From this is naturally induced the notion of a \emph{[[prequantized Lagrangian correspondence]]}. See there for more details. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} For $\phi : (X_0, \omega_0) \to (X_1, \omega_1)$ a [[symplectomorphism]] we have that its [[graph of a function|graph]] $graph(\phi) \subset X_0^- \times X_1$ is a Lagrangian correspondence and composition of syplectomorphisms corresponds to composition of Lagrangian correspondences. \end{example} \begin{example} \label{}\hypertarget{}{} For a [[Hamiltonian action]] on a [[symplectic manifold]] $(X,\omega)$ of a [[Lie group]] $G$ given by a [[moment map]] $\mu$, the [[zero locus]] $\mu^{-1}(0)$ consitutes a Lagrangian correspondence between $(X,\omega)$ and its [[symplectic reduction]] $\mu^{-1}(0)/G$. \end{example} \begin{example} \label{}\hypertarget{}{} Let $X$ be a [[manifold]], $G= U(n)$ the [[unitary group]], $P \to X$ a $G$-[[principal bundle]] and $D \to X$ a $U(1)$-bundle with [[connection on a bundle|connection]]. Then there is the [[moduli space]] $M(X) = M(P,D)$ of connections on $P$ with central curvature and given determinant. For example if $X$ has [[genus]] $g$ then \begin{displaymath} M(X) = \{ (A,B, \cdots, A_g, B_g) \in G^{2g}\} \end{displaymath} such that $\prod_{j=1}^g A_j B_j A_j^{-1} B_j^{-1} = diag(e^{2\pi i d/})/G$ Let $Y_{01}$ be a [[cobordism]] from $X_0$ to $X_1$ with extension \begin{displaymath} L(Y_{01}) = Image(M(Y_{01}) \stackrel{restr.}{\to} M(X_0)^- \times M(X_1) ) \end{displaymath} is a Lagrangian correspondence if $Y_{01}$ is sufficiently simple. Further assuming this we have for composition that \begin{displaymath} L(Y_{01} \circ Y_{12}) = L(Y_{01}) \circ L(Y_{12}) \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} Given symplectic manifolds $(X_1, \omega_1)$ and $(X_2, \omega_2)$ and a [[symplectomorphism]] $(X_1 \times X_2 , p_1^\ast \omega_1 - p_2^\ast \omega_2) \stackrel{\simeq}{\longrightarrow} (X,\omega)$, then certain Lagrangian correspondences between $(X_1, \omega_1)$ and $(X_2, \omega_2)$ are identified with functions on $X$. This is identified with the calculus of generating functions for [[canonical transformations]] as used in [[classical mechanics]]. (\hyperlink{Weinstein83}{Weinstein 83, p. 5}) \end{example} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[symplectic dual pair]] \item [[Weinstein symplectic category]] \item [[prequantized Lagrangian correspondence]] \item [[Lagrangian correspondences and category-valued TFT]] \item [[cosmic Galois group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion originates somewhere around \begin{itemize}% \item [[Lars Hörmander]], \emph{Fourier Integral Operators I.}, Acta Math. \textbf{127} (1971) \end{itemize} \begin{itemize}% \item [[Alan Weinstein]], \emph{Symplectic manifolds and their lagrangian submanifolds}, Advances in Math. 6 (1971) \end{itemize} The use of Lagrangian correspondences for encoding [[symplectomorphisms]] was further highlighted in \begin{itemize}% \item [[Alan Weinstein]], \emph{The symplectic ``category''}, In Differential geometric methods in mathematical physics (Clausthal, 1980), volume 905 of Lecture Notes in Math., pages 45--51. Springer, Berlin, 1982. \end{itemize} and on p. 5 and then section 3 \begin{itemize}% \item [[Alan Weinstein]], \emph{Lectures on Symplectic Manifolds}, volume 29 of CBMS Regional Conf. Series in Math. Amer. Math. Soc., 1983. third printing. \end{itemize} Further developments include for instance \begin{itemize}% \item [[Katrin Wehrheim]], [[Chris Woodward]], \emph{Floer Cohomology and Geometric Composition of Lagrangian Correspondences} (\href{http://arxiv.org/abs/0905.1368}{arXiv:0905.1368}) \end{itemize} A review of the way Lagrangian correspondences encode symplectomorphisms induced by Hamiltonian time evolution in the context of [[field theory]] and generalization to the broader context of [[BV-BRST formalism]] is in \begin{itemize}% \item [[Alberto Cattaneo]], [[Pavel Mnev]], [[Nicolai Reshetikhin]], \emph{Classical and quantum Lagrangian field theories with boundary} (\href{http://arxiv.org/abs/1207.0239}{arXiv:1207.0239}) \end{itemize} [[!redirects Lagrangian correspondences]] [[!redirects canonical relation]] [[!redirects canonical relations]] \end{document}