\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lagrangian correspondences and category-valued TFT} This entry describes classes of examples of [[A-∞ category]]-valued [[FQFTs]] defined on a version of the [[symplectic category]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{lagrangian_correspondences}{Lagrangian correspondences}\dotfill \pageref*{lagrangian_correspondences} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} Let $(X.\omega)$ be a [[compact space|compact]] [[symplectic manifold]]. At least in good cases to this is associated a [[Fukaya category]] $Fuk(X)$ of [[Lagrangian submanifold]]s and an enlarged version $Fuk^#(X)$. Write $X^-$ for the symplectiv manifold $(X,-\omega)$. Now if $(X_j, \omega_j)$ for $j = 0,1$ are two Lagrangian submanifolds and $L_{01} \subset X^-_0 \times X_1$ a Lagrangian correspondence then we get an [[A-∞ category|A-∞ functor]] $\phi(L_{01}) : Fuk^#(X_0) \to Fuk^#(X_1)$ \begin{theorem} \label{}\hypertarget{}{} \textbf{(Wehrheim, Woodward)} For $L_{01} \subset X^{-}_0 \times X_1$ and $L_{12} \subset X^{-}_1 \times X_2$ Lagrangian submanifolds, assuming monotonicity and Maslov conditions we have an $A_\infty$-homotopy \begin{displaymath} \Phi(L_{01}) \circ \Phi(L_{12}) \simeq \Phi(L_{01} \circ L_{12}) \,, \end{displaymath} where on the right we have a natural notion of composition of Lagrangian submanifolds. \end{theorem} (\href{WehrheimWoodward07}{Wehrheim-Woodward 07, section 3.2}) This is the symplectic version of [[Mukai functors]]. \begin{example} \label{}\hypertarget{}{} For $X_0$ and $X_1$ a compact [[Riemann surfaces]] and $M(X_0), M(X_1)$ their [[moduli spaces]] of fixed determinant rank $n$-bundles, and for $Y_{01}$ a [[cobordism]] (compact, oriented) from $X_0$ to $X_1$ then consider \begin{displaymath} L(Y_{01}) := Image( M(Y_{01}) \stackrel{restriction}{\to} M(X_0)^- \times M(X_1) ) \end{displaymath} If $Y_{01}$ is \emph{elementary} in that there exists a [[Morse function]] $Y \to \mathbb{R}$ with $\leq 1$ critical points then $L(Y_{01})$ is a Lagrangian correspondence. \end{example} \begin{cor} \label{}\hypertarget{}{} The assignment \begin{displaymath} Y_{01} \mapsto \Phi(L(Y_{01})) \end{displaymath} defines a 2+1-dimensional [[FQFT]] for connected cobordisms with values in [[A-∞ categories]]. \end{cor} This is supposed to be the 2+1-dimensional part of [[Donaldson theory]]. Other theories that fit into this framework: \begin{enumerate}% \item symplectic [[Khovanov theory]] (Seidel-Smith and Rezazodegab) \item [[Heegard-Floer theory]] $X$ a surface $\mapsto$ $Fuk^# sym X$ elementary cobordisms $\mapsto$ $\Phi($vanishing cycle$)$ \end{enumerate} \hypertarget{lagrangian_correspondences}{}\subsection*{{Lagrangian correspondences}}\label{lagrangian_correspondences} Write $X^-j = (X_j , -\omega_j)$ for a [[symplectic manifold]] with its symplectic form reversed. \begin{defn} \label{}\hypertarget{}{} For $(X_j, \omega_j)$ two [[symplectic manifold]]s, a \textbf{[[Lagrangian correspondence]]} is a Lagrangian submanifold of $X^-_0 \times X_1$, that is \begin{displaymath} \iota : L_{0,1} \hookrightarrow X^-_0 \times X_1 \end{displaymath} with $dim(L_{0,1}) = \frac{1}{2}(dim(x_0) + dim(X_1))$ and \begin{displaymath} \iota^*(-\pi_0^* \omega_0 + \pi_1^* \omega_1) = 0 \,, \end{displaymath} where $\pi_i$ are the two projections out of the [[product]]. The \textbf{composition} of two Lagrangian submanifolds is \begin{displaymath} L_{01} \circ L_{12} := \pi_{02}(L_{01} \times_{X_1} L_{12}) \end{displaymath} which is a Lagrangian correspondence in $X^-_0 \times X_2$ if everything is suitably smoothly embedded by $\pi_{02}$. \end{defn} \begin{example} \label{}\hypertarget{}{} For $\phi : X_0 \to X_1$ a [[symplectomorphism]] we have $graph(\phi) \subset X_0^- \times X_1$ is a Lagrangian correspondence and composition of syplectomorphisms corresponds to composition of Lagrangian correspondences. \end{example} \begin{example} \label{}\hypertarget{}{} Let $X$ be a [[manifold]], $G= U(n)$ the [[unitary group]], $P \to X$ a $G$-[[principal bundle]] and $D \to X$ a $U(1)$-bundle with [[connection on a bundle|connection]]. Then there is the [[moduli space]] $M(X) = M(P,D)$ of connections on $P$ with central curvature and given determinant. For example if $X$ has [[genus]] $g$ then \begin{displaymath} M(X) = \{ (A,B, \cdots, A_g, B_g) \in G^{2g}\} \end{displaymath} such that $\prod_{j=1}^g A_j B_j A_j^{-1} B_j^{-1} = diag(e^{2\pi i d/})/G$ Let $Y_{01}$ be a [[cobordism]] from $X_0$ to $X_1$ with extension \begin{displaymath} L(Y_{01}) = Image(M(Y_{01}) \stackrel{restr.}{\to} M(X_0)^- \times M(X_1) ) \end{displaymath} is a Lagrangian correspondence if $Y_{01}$ is sufficiently simple. Further assuming this we have for composition that \begin{displaymath} L(Y_{01} \circ Y_{12}) = L(Y_{01}) \circ L(Y_{12}) \,. \end{displaymath} \end{example} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Katrin Wehrheim]], [[Chris Woodward]], \emph{Functoriality for Lagrangian correspondences in Floer theory} (\href{http://arxiv.org/abs/0708.2851}{arXiv:0708.2851}) \end{itemize} \begin{itemize}% \item [[Katrin Wehrheim]], [[Chris Woodward]], \emph{Floer Cohomology and Geometric Composition of Lagrangian Correspondences} (\href{http://arxiv.org/abs/0905.1368}{arXiv:0905.1368}) \end{itemize} \end{document}