\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lambert W-function} \hypertarget{the_lambert__function}{}\section*{{The Lambert $W$ function}}\label{the_lambert__function} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{lambert__and_rooted_trees}{Lambert $W$ and rooted trees}\dotfill \pageref*{lambert__and_rooted_trees} \linebreak \noindent\hyperlink{counting_rooted_trees}{Counting rooted trees}\dotfill \pageref*{counting_rooted_trees} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[complex analysis]], the Lambert $W$-function is a [[multivalued function|multi-branched function]] [[inverse function|inverse]] to the function $f(z) = z e^z$. Among other things, it is important in the enumeration of tree-like structures, for instance [[tree|rooted trees]], and in the combinatorial study of the [[Lagrange inversion formula]]. We have $W(z) e^{W(z)} = z$. In a neighborhood of $z = 0$, we may develop $W(z)$ as a formal [[power series]], and there is a quite remarkable formula: \begin{displaymath} W(z) = \sum_{n = 1}^{\infty} \frac{(-n)^{n-1} z^n}{n!} . \end{displaymath} A proof of this formula is sketched below. \hypertarget{lambert__and_rooted_trees}{}\subsection*{{Lambert $W$ and rooted trees}}\label{lambert__and_rooted_trees} Let $R(X)$ be the [[species]] of rooted trees. Choosing a structure of rooted tree $T$ (on a finite set of vertices) amounts to \begin{itemize}% \item Choosing one vertex to serve as the root of $T$; \item Choosing a structure of ``rooted forest'' (a disjoint collection of rooted trees) on the complement of the root. \end{itemize} The idea is that given a rooted forest, we get a rooted tree by adding in a new vertex (which serves as root) and drawing an edge from each root of the forest to the new vertex. This observation leads to the structural isomorphism \begin{displaymath} R(X) = X \otimes \exp(R(X)) \end{displaymath} Let $R(x) = \sum_{n \geq 0} \frac{a_n x^n}{n!}$ be the formal power series corresponding to the generating function of $R(X)$, so that $a_n$ counts the number of rooted trees on $n$ vertices. We may call $R(x)$ the \emph{cardinality} of $R(X)$. One has the analogous decategorified formula \begin{displaymath} R(x) = x e^{R(x)} \end{displaymath} or \begin{displaymath} R(x) e^{-R(x)} = x \end{displaymath} which means, after a short series of algebraic manipulations, that $R(x)$ is related to the Lambert $W$ function as follows: \begin{displaymath} R(x) = - W(-x). \end{displaymath} \hypertarget{counting_rooted_trees}{}\subsection*{{Counting rooted trees}}\label{counting_rooted_trees} The number of possible rooted tree structures on $n$ labeled vertices is $n^{n-1}$. We sketch Joyal's beautiful proof of this fact; it follows that \begin{displaymath} \itexarray{ W(x) & = & - R(-x) \\ & = & - \sum_{n \geq 1} \frac{n^{n-1} (-x)^n}{n!} \\ & = & \sum_{n \geq 1} \frac{(-n)^{n-1} x^n}{n!} } \end{displaymath} as claimed earlier. In fact, Joyal counts the number of \emph{bipointed} trees (trees equipped with an ordered pair of vertices, possibly the same one), and shows this is the same as the number of endofunctions on an $n$ element set. Since this is $n^n$, and since the number of ordered pairs of vertices is $n^2$, it follows that the number of tree structures on an $n$-element set is $n^{n-2}$, a result referred to as \textbf{Cayley's theorem}. Therefore the number of \emph{rooted} trees is $n \cdot n^{n-2} = n^{n-1}$. For a bipointed tree $T$, let the ordered pair of vertices be $(t, h)$ where $t$ is called a \emph{tail} and $h$ a \emph{head}. The set of vertices on the unique path from $t$ to $h$ is endowed with a [[linear order]] (namely, the order in which they appear on the path, with $t$ first). We call this ordered set the \emph{spine} of the bipointed tree. At the same time, each vertex $v$ along the spine is the root of a rooted tree $T_v$: a full subgraph where a vertex $w$ of $T$ belongs to $T_v$ if the unique path from $w$ to $h$ first meets the spine at $v$. A choice of bipointed tree structure on a finite set $S$ can thus be equivalently described as follows: \begin{itemize}% \item Partition $S$ into one or more subsets (which are equivalence classes); \item Choose a rooted tree structure on each class (if the root is $v$, this tree structure will be $T_v$); \item Choose a way of linearly ordering the equivalence classes (which is really the same as linearly ordering the roots). \end{itemize} If $L$ is the species of linearly ordered sets, and $R$ is the species of rooted trees, this way of describing bipointed trees establishes an explicit bijection between $L \circ R$ and the species of bipointed trees. For an endofunction $f \colon S \to S$, let $K$ be the intersection of images of iterates $f^{(n)}(S)$. It is immediate that the restriction $f\colon K \to K$ is a surjection and therefore a bijection (permutation). Picturing an endofunction as a graph (where an edge is drawn between $s$ and $f(s)$), each vertex $v \in K$ is the root of a rooted tree $T_v$: a full subgraph where a vertex $w$ belongs to $T_v$ if $f^{(n)}(w) = v$ for some $n$, but $f^{(k)}(w)$ does not belong to $K$ for $k \lt n$. A choice of endofunction structure on $S$ can thus be equivalently described as follows: \begin{itemize}% \item Partition $S$ into one or more subsets (equivalence classes); \item Choose a rooted tree structure on each class (if the root is $v$, this tree structure is $T_v$); \item Choose a permutation on the set of equivalence classes (tantamount to a permutation of the roots $v$). \end{itemize} If $P$ is the species of permutations, and $R$ the species of rooted trees, this establishes an explicit bijection between $P \circ R$ and the species of endofunctions. Since the species $L$ of linear orderings and the species $P$ of permutations have the same cardinality, it follows that the species $L \circ R$ and $P \circ R$ also have the same cardinality, which is to say that the number of bipointed tree structures on $S$ equals the number of endofunctions, as was to be proved. [[!redirects Lambert W function]] [[!redirects Lambert W-function]] \end{document}