\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Landau-Ginzburg model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_categories_of_branes}{The $\infty$-categories of branes}\dotfill \pageref*{the_categories_of_branes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{partition_function_and_elliptic_genera}{Partition function and elliptic genera}\dotfill \pageref*{partition_function_and_elliptic_genera} \linebreak \noindent\hyperlink{branes}{Branes}\dotfill \pageref*{branes} \linebreak \noindent\hyperlink{defects}{Defects}\dotfill \pageref*{defects} \linebreak \noindent\hyperlink{tcft_formulation}{TCFT formulation}\dotfill \pageref*{tcft_formulation} \linebreak \noindent\hyperlink{relation_to_solid_state_physics}{Relation to Solid state physics}\dotfill \pageref*{relation_to_solid_state_physics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Originally, the \emph{Ginzburg-Landau model} is a [[model (physics)|model]] in [[solid state physics]] for [[superconductivity]]. Roughly this type of model has then been used as models for 2d [[quantum field theory]] in [[string theory]]. There, a \emph{Landau-Ginzburg model} (LG-model) is a 2-[[dimension|dimensional]] [[supersymmetry|supersymmetric]] [[sigma model]] [[QFT]] characterized by the fact that its [[Lagrangian]] contains a [[potential]] term: given a [[complex manifold|complex]] [[Riemannian manifold|Riemannian]] [[target space]] $(X,g)$, the [[action functional]] of the LG-model is schematically of the form \begin{displaymath} S_{LB} : (\phi : \Sigma \to X) \mapsto \int_\Sigma \left( \vert \nabla \Phi \vert^2 + \vert (\nabla W)(\phi) \vert^2 + fermionic\;terms \right) d \mu \,, \end{displaymath} where $\Sigma$ is the 2-[[dimension]]al [[worldsheet]] and $W : X \to \mathbb{C}$ -- called the model's \emph{superpotential} -- is a [[holomorphic function]]. (Usually $X$ is actually taken to be a [[Cartesian space]] and all the nontrivial structure is in $W$.) Landau-Ginzburg models have gained importance as constituting one type of QFTs that are related under [[homological mirror symmetry]]: If the [[target space]] $X$ is a [[Fano variety]], the usual [[B-model]] does not quite exist on it, since the corresponding supersymmetric [[string]] [[sigma model]] is not conformally invariant as a quantum theory, and the axial $U(1)$ [[R-current]] used to define the B-twist is [[quantum anomaly|anomalous]]. Still, there exists an analogous [[derived category]] of B-branes. A Landau-Ginburg model is something that provides the dual A-branes to this under [[homological mirror symmetry]]. Conversely, Landau-Ginzburg B-branes are homological mirror duals to the [[A-model]] on a Fano variety. (\ldots{}) As suggested by [[Maxim Kontsevich]] (see \hyperlink{KapustinLi}{Kapustin-Li, section 7}), the B-branes in the LG-model (at least in a certain class of cases) are not given by [[chain complexes]] of [[coherent sheaves]] as in the [[B-model]], but by \emph{[[twisted complexes]]} : for these the square of the [[differential]] is in general non-vanishing and identified with the \emph{superpotential} of the LG-model. (\ldots{}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{the_categories_of_branes}{}\subsubsection*{{The $\infty$-categories of branes}}\label{the_categories_of_branes} A [[brane]] for a LG model is given by a [[matrix factorization]] of its superpotential. (\ldots{}) [[curved dg-algebra]] (\ldots{}) \hyperlink{CaldararuTu}{CaldararuTu} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[2d TQFT]], [[TCFT]] \item [[holographic superconductor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original articles are \begin{itemize}% \item [[Cumrun Vafa]] Nicholas P. Warner, \emph{Catastrophes and the Classification of Conformal Theories}, Phys.Lett. B218 (1989) 51 \item [[Brian Greene]], [[Cumrun Vafa]], \emph{Calabi-Yau Manifolds and Renormalization Group Flows}, Nucl.Phys. B324 (1989) 371 \item [[Edward Witten]], \emph{Phases of $N=2$ Theories In Two Dimensions}, Nucl.Phys.B403:159-222,1993 (\href{http://arxiv.org/abs/hep-th/9301042}{arXiv:hep-th/9301042}) \end{itemize} Lecture notes include \begin{itemize}% \item [[Edward Witten]], \emph{Dynamical aspects of QFT}, Lecture 15: \emph{The Landau-Ginzburg description of N=2 minimal models; Quantum cohomology and K\"a{}hler manifolds}, in Part IV of \emph{[[Quantum Fields and Strings]]}. \end{itemize} \hypertarget{partition_function_and_elliptic_genera}{}\subsubsection*{{Partition function and elliptic genera}}\label{partition_function_and_elliptic_genera} The [[partition function]] of LG-models and its relation to [[elliptic genera]] is disucssed in \begin{itemize}% \item [[Edward Witten]], \emph{On the Landau-Ginzburg Description of $N=2$ Minimal Models}, Int.J.Mod.Phys.A9:4783-4800,1994 (\href{http://arxiv.org/abs/hep-th/9304026}{arXiv:hep-th/9304026}) \item Toshiya Kawai, Yasuhiko Yamada, Sung-Kil Yang, \emph{Elliptic Genera and $N=2$ Superconformal Field Theory} (\href{http://arxiv.org/abs/hep-th/9306096}{arXiv:hep-th/9306096}) \end{itemize} \hypertarget{branes}{}\subsubsection*{{Branes}}\label{branes} The [[branes]] of the LG-model are discussed for instance in \begin{itemize}% \item [[Anton Kapustin]], Yi Li, \emph{D-Branes in Landau-Ginzburg models and algebraic geometry}, \href{http://arxiv.org/abs/hep-th/0210296}{arXiv:hep-th/0210296} \end{itemize} The [[derived category]] of [[D-brane]]s in type B LG-models is discussed in \begin{itemize}% \item [[Dmitri Orlov]], \emph{Triangulated categories of singularities and D-branes in Landau-Ginzburg models}, Proc. Steklov Inst. Math. 2004, no. 3 (246), 227--248 (\href{http://arxiv.org/abs/math/0302304}{arXiv:math/0302304}) \item [[Dmitri Orlov]]\_Derived categories of coherent sheaves and triangulated categories of singularities\_, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 503--531, Progr. Math., 270, Birkh\"a{}user Boston, Inc., Boston, MA, 2009 (\href{http://arxiv.org/abs/math.ag/0503632}{arXiv:math.ag/0503632}) \item Andrei Caldararu, Junwu Tu, \emph{Curved $A_\infty$-algebras and Landau-Ginzburg models} (\href{http://www.math.wisc.edu/~andreic/publications/AinfinityLG.pdf}{pdf}) \end{itemize} \hypertarget{defects}{}\subsubsection*{{Defects}}\label{defects} General defects of B-twisted affine LG models were first discussed in \begin{itemize}% \item [[Ilka Brunner]], [[Daniel Roggenkamp]], \emph{B-type defects in Landau-Ginzburg models}, JHEP 0708 (2007) 093, (\href{http://arxiv.org/abs/0707.0922}{arXiv:0707.0922}) \end{itemize} The graded pivotal bicategory of B-twisted affine LG models is studied in detail in \begin{itemize}% \item Nils Carqueville, [[Daniel Murfet]], \emph{Adjunctions and defects in Landau-Ginzburg models}, Advances in Mathematics, Volume 289 (2016), 480-566, (\href{http://arxiv.org/abs/1208.1481}{arXiv:1208.1481}) \end{itemize} Orbifolds of defects are studied in \begin{itemize}% \item [[Ilka Brunner]], [[Daniel Roggenkamp]], \emph{Defects and Bulk Perturbations of Boundary Landau-Ginzburg Orbifolds}, JHEP 0804 (2008) 001, (\href{http://arxiv.org/abs/0712.0188}{arXiv:0712.0188}) \item Nils Carqueville, Ingo Runkel, \emph{Orbifold completion of defect bicategories}, (\href{http://arxiv.org/abs/1210.6363}{arXiv:1210.6363}) \item [[Ilka Brunner]], Nils Carqueville, Daniel Plencner, \emph{Orbifolds and topological defects}, Comm. Math. Phys. 332 (2014), 669-712, (\href{http://arxiv.org/abs/1307.3141}{arXiv:1307.3141}) \item [[Ilka Brunner]], Nils Carqueville, Daniel Plencner, \emph{Discrete torsion defects}, Comm. Math. Phys. 337 (2015), 429-453, (\href{http://arxiv.org/abs/1404.7497}{arXiv:1404.7497}) \end{itemize} A relation to [[linear logic]] and the [[geometry of interaction]] is in \begin{itemize}% \item [[Daniel Murfet]], \emph{Computing with cut systems} (\href{http://arxiv.org/abs/1402.4541}{arXiv:1402.4541}) \end{itemize} \hypertarget{tcft_formulation}{}\subsubsection*{{TCFT formulation}}\label{tcft_formulation} Discussions of topological Landau-Ginzburg [[B-models]] explicitly as open [[TCFT]]s (aka open topological string theories) are in \begin{itemize}% \item Nils Carqueville, \emph{Matrix factorisations and open topological string theory}, JHEP 07 (2009) 005, (\href{http://arxiv.org/abs/0904.0862}{arXiv:0904.0862}) \item [[Ed Segal]], \emph{The closed state space of affine Landau-Ginzburg B-models} (\href{http://arxiv.org/abs/0904.1339}{arXiv:0904.1339}) \item Nils Carqueville, Michael Kay, \emph{Bulk deformations of open topological string theory}, Comm. Math. Phys. 315, Number 3 (2012), 739-769, (\href{http://arxiv.org/abs/1104.5438}{arXiv:1104.5438}) \end{itemize} \hypertarget{relation_to_solid_state_physics}{}\subsubsection*{{Relation to Solid state physics}}\label{relation_to_solid_state_physics} (\ldots{}) [[!redirects LG-model]] [[!redirects LG-models]] [[!redirects Landau-Ginzburg models]] \end{document}