\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Laurent series} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{laurent_series_as_distributions}{Laurent series as distributions}\dotfill \pageref*{laurent_series_as_distributions} \linebreak \noindent\hyperlink{algebraic_closure}{Algebraic closure}\dotfill \pageref*{algebraic_closure} \linebreak \noindent\hyperlink{function_field_analogy}{Function field analogy}\dotfill \pageref*{function_field_analogy} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Laurent series} generalize [[power series]] by allowing both positive and negative powers. In particular, \emph{Laurent series} with complex coefficients generalize [[Taylor series]] of analytic functions to [[meromorphic functions]]. A Laurent series for a meromorphic function $f(z)$ at finite $z\in\mathbb{C}$ has the form \begin{displaymath} f(z) = \sum_{n=k}^{\infty}f_n z^n, \end{displaymath} where $k$ is merely constrained to be finite and is often negative. Or, in some contexts one wants to take $k = -\infty$. Here such a formal sum (with powers extending infinitely in both directions) is suggestive notation for an element belonging to the dual $\prod_{n \in \mathbb{Z}} R \cdot z^n$ of a ring $\oplus_{n \in \mathbb{Z}} R \cdot z^n$ (see Laurent polynomials below). In such contexts, Laurent series can be likened to distributions, i.e., functionals on the algebra of functions $\mathbb{Z} \to R$ with compact support. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \emph{Laurent series} in one variable $z$ over a commutative unital ring $k$ is a [[doubly infinite series]] \begin{displaymath} f(z) = \sum_{n=-\infty}^{\infty} f_n z^n , \end{displaymath} where $f_n\in k$. Equivalently: a Laurent series is a function $\mathbb{Z} \to k: n \mapsto f_n$. The $k$-module of Laurent series is denoted $k[ [z, z^{-1}] ]$. \end{defn} A \emph{Laurent polynomial} is a Laurent series for which all but finitely many $f_n$ are zero. Laurent polynomials form a ring which may be described as $k[z, z^{-1}]$ or abstractly as $k[x, y]/(x y - 1)$. Observe that Laurent series in the generality discussed here do not analogously form a ring: the obvious definition of the coefficients of the product $h(z) = f(z)g(z)$ of two Laurent series $f(z), g(z)$, \begin{displaymath} h_n = \sum_{k \in \mathbb{Z}} f_k g_{n-k}, \end{displaymath} doesn't make sense in general (although it could sometimes make sense in topological contexts where some such infinite sums can converge, as in the case $k = \mathbb{C}$). \begin{remark} \label{}\hypertarget{}{} The $k$-vector space of Laurent series does however form a module over the ring of Laurent polynomials, i.e., if $f(z) \in k[z, z^{-1}]$ and $g(z)$ is a Laurent series, then the product $h(z) = f(z)g(z)$ as defined above always makes sense. \end{remark} In general, questions of convergence are treated as separate issues. In complex analysis, the Laurent series $\sum_{n \in \mathbb{Z}} a_n z^n$ describes a meromorphic function in a neighborhood around the point $z = 0$ (possibly with a pole there) if all but finitely many negatively indexed terms are zero. Similarly, series of the form $\sum_{n = -N}^{\infty} a_n (z-a)^n$ describe meromorphic functions in a neighborhood of $z=a$ with poles of order at most $N$. On the other hand, in algebra one often hears of the ring of \emph{formal Laurent series}. Here, the presence of the word ``ring'' signifies that we are restricting the coefficients so that multiplication makes sense. Thus, \begin{defn} \label{ring}\hypertarget{ring}{} The \emph{ring of formal Laurent series} over a [[commutative ring]] $A$ in an indeterminate $x$ consists of Laurent series $\sum_{n \in \mathbb{Z}} f_n z^n$, with $f_n \in A$ but where all but finitely many $f_n$ for $n \lt 0$ vanish. \end{defn} Multiplication defined as above clearly makes sense. If $A$ is a field $k$, then this ring is usually denoted $k((x))$ and is in fact a [[field]]; indeed it is the [[field of fractions]] of the ring $k[ [x] ]$ of [[formal power series]], where $k[ [x] ]$ is often viewed as a discrete [[valuation ring]]. \begin{remark} \label{restrict}\hypertarget{restrict}{} It would perhaps be clearer if we used the term ``restricted Laurent series'' to cover the Laurent series considered in Definition \ref{ring}, and let ``Laurent series'' be the term that covers doubly infinite series. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{laurent_series_as_distributions}{}\subsubsection*{{Laurent series as distributions}}\label{laurent_series_as_distributions} Another point of view on Laurent series is given in the following alternative definition. \begin{defn} \label{}\hypertarget{}{} A Laurent series over $k$ is a $k$-linear functional \begin{displaymath} \phi: k[z, z^{-1}] \to k \end{displaymath} on the algebra of Laurent polynomials. \end{defn} The associated series is $\sum_{n \in \mathbb{Z}} \phi(z^n)z^n$. But here we emphasize the point of view that Laurent series have a distribution-like character, with Laurent polynomials being considered a space of functions $\mathbb{Z} \to k$ with compact (finite) support, via the evident inclusion \begin{displaymath} k[z, z^{-1}] \cong \oplus_{n \in \mathbb{Z}} k \cdot z^n \hookrightarrow \prod_{n \in \mathbb{Z}} k \cdot z^n = k^{\mathbb{Z}}. \end{displaymath} Of particular interest as a Laurent series is the formal Dirac distribution, \begin{displaymath} \delta(z) = \sum_{n \in \mathbb{Z}} z^n, \end{displaymath} which intuitively is like the Fourier transform $\sum_{n = -\infty}^\infty e^{i n x}$ of the pointwise multiplicative identity $\mathbf{1}$ given by $\mathbf{1}(n) = 1$ for all $n$. It has the following property: \begin{itemize}% \item For $f(z)$ a Laurent polynomial, $f(z)\delta(z) = f(1)\delta(z)$. \end{itemize} Indeed, notice that $\delta(z)$ is the distribution $p \mapsto p(1)$ which evaluates a Laurent polynomial at the multiplicative identity $z=1$. More generally, for $a \in k^\ast$ an invertible unit, the series $\delta(a z) = \sum_{n \in \mathbb{Z}} a^n z^z$ satisfies \begin{itemize}% \item $f(z)\delta(a z) = f(a^{-1})\delta(a z)$. \end{itemize} Just as it doesn't make sense in general to multiply distributions (at least not without heavy qualifications, as in the theory of \hyperlink{Col}{Colombeau}), we cannot make sense of expressions like $\delta(z)^2$. However, one can meaningfully work with derivatives of distributions, so we have for example \begin{displaymath} \delta'(z) = \sum_{n \in \mathbb{Z}} n z^n \end{displaymath} which has the property \begin{itemize}% \item $f(z)\delta'(z) = f(1)\delta'(z) - f'(1)\delta(z)$. \end{itemize} Indeed, there is a formal calculus of the Dirac distribution that plays an important role in the theory of vertex operator algebras. See for example the treatment in \hyperlink{FLM}{Frenkel, Lepowsky, Meurman}. One can also work with \emph{convolution products} $h(z) = (f \ast g)(z)$, defined by multiplying coefficients degree-wise: \begin{displaymath} h(z) = \sum_{n \in \mathbb{Z}} f_n g_n z^n. \end{displaymath} \hypertarget{algebraic_closure}{}\subsubsection*{{Algebraic closure}}\label{algebraic_closure} \begin{theorem} \label{Puiseux}\hypertarget{Puiseux}{} If $K$ is [[algebraically closed field|algebraically closed]] and has [[characteristic]] 0, then the [[algebraic closure]] of the field of (restricted) Laurent series $K((x))$ over $K$ is the field of [[Puiseux series]] over $K$. \end{theorem} Here ``restricted'' refers to Remark \ref{restrict}. See \emph{[[Puiseux series]]} for more details on this result. \hypertarget{function_field_analogy}{}\subsubsection*{{Function field analogy}}\label{function_field_analogy} [[!include function field analogy -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Igor Frenkel, James Lepowsky, and Arne Meurman, \emph{Vertex Operator Algebras and the Monster}, Volume 134 in Pure and Applied Mathematics, Academic Press 1988. \end{itemize} \begin{itemize}% \item \href{http://math.rutgers.edu/~sdurst/DILS.html}{Doubly Infinite Laurent Series}, lectures for formal Laurent series in [[vertex operator algebra]] context \item Alexander Zheglov, \emph{Wild division algebras over Laurent series fields}, \href{http://arxiv.org/abs/math/0503637}{math.NT/0503637} \end{itemize} For discussion of products of distributions, see \begin{itemize}% \item J.F. Colombeau, \emph{Multiplication of distributions}, Bull. Amer. Math. Soc. (N.S.) Volume 23, Number 2 (1990), 251-268. (\href{http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.bams/1183555881}{web}) \end{itemize} \end{document}