\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lawvere's fixed point theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{logic}{}\paragraph*{{Logic}}\label{logic} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{precise_statement}{Precise statement}\dotfill \pageref*{precise_statement} \linebreak \noindent\hyperlink{History}{History}\dotfill \pageref*{History} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Various [[diagonal arguments]], such as those found in the proofs of the [[halting theorem]], [[Cantor's theorem]], and [[Gödel]]`s [[incompleteness theorem]], are all instances of the \emph{Lawvere fixed point theorem} (\hyperlink{Lawvere69}{Lawvere 69}), which says that for any [[cartesian closed category]], if there is a suitable notion of [[epimorphism]] from some [[object]] $A$ to the [[exponential object]]/[[internal hom]] from $A$ into some other object $B$ \begin{displaymath} A \longrightarrow B^A \end{displaymath} then every [[endomorphism]] $f \colon B \to B$ of $B$ has a [[fixed point]]. \hypertarget{precise_statement}{}\subsection*{{Precise statement}}\label{precise_statement} Let us say that a map $\phi: X \to Y$ is \emph{point-surjective} if for every point $q: 1 \to Y$ there exists a point $p: 1 \to X$ that lifts $q$, i.e., $\phi p = q$. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Lawvere's fixed-point theorem)} In a cartesian closed category, if there is a point-surjective map $\phi: A \to B^A$, then every morphism $f: B \to B$ has a fixed point $s: 1 \to B$ (so that $f s = s$). \end{theorem} \begin{proof} Given $f: B \to B$, let $q: 1 \to B^A$ name the composite map \begin{displaymath} A \stackrel{\delta}{\to} A \times A \stackrel{\phi \times 1_A}{\to} B^A \times A \stackrel{eval}{\to} B \stackrel{f}{\to} B \end{displaymath} from $A$ to $B$. In [[lambda calculus]] notation, $q = \lambda a: A. f \phi(a)(a)$. Let $p: 1 \to A$ lift $q$. Then calculate \begin{displaymath} \phi(p)(p) = q(p) = (\lambda a: A. f \phi(a)(a))(p) = f \phi(p)(p) \end{displaymath} where the last equation is a [[beta-reduction]]. Hence $s \coloneqq \phi(p)(p)$ is a fixed point of $f$. \end{proof} \begin{remark} \label{}\hypertarget{}{} As pointed out by Lawvere, a hypothesis even weaker than point-surjectivity will do. Namely, $g: X \to Y^A$ is called \emph{weakly point-surjective} iff for every $f: A \to Y$ there is $x: 1 \to X$ such that for every $a: 1 \to A$, we have $g(x)(a) = f(a)$. (This is weaker because $g(x) = f$ cannot be inferred from $g(x)(a) = f(a)$ for all \emph{[[global elements]]} $a$.) \end{remark} \begin{remark} \label{}\hypertarget{}{} The statement need not hold if ``(weakly) point-surjective'' is replaced by ``epimorphism''. For example, in the cartesian closed category of compactly generated Hausdorff spaces and continuous maps, with $S = S^1$ the circle, the [[Polish space]] $S^\mathbb{N}$ is compactly generated under the product topology; this is the exponential where $\mathbb{N}$ is given the discrete topology. There is a countable dense subspace $i: \mathbb{N} \to S^\mathbb{N}$, but recall that for any full subcategory of the category of Hausdorff spaces, a map $f: X \to Y$ is an epimorphism iff it has a dense [[image]]. On the other hand, there are obvious rotations of $S$ that have no fixed points. \end{remark} Thus epimorphisms need not be (weakly) point-surjective. Nor are point-surjective maps necessarily epimorphisms; for example, if $U \hookrightarrow V$ is a proper inclusion between proper subobjects of the terminal object $1$ (as may happen in a [[sheaf topos]]), then this is vacuously point-surjective but not an epimorphism. Point-surjectivity may seem like an inadequate notion of ``epimorphism'', but it suffices for many purposes. For example, \begin{prop} \label{}\hypertarget{}{} \textbf{(Cantor's theorem in a topos)} For any object $X$, there is an epimorphism $f: X \to \Omega^X$ only if the topos is degenerate. \end{prop} \begin{proof} Suppose there existed such an epi. In a topos, a map $f: X \to Y$ is epi iff the [[image|direct image]] map $\exists_f: \Omega^X \to \Omega^Y$ retracts the [[preimage|inverse image]] map $\Omega^f: \Omega^Y \to \Omega^X$, i.e., $\exists_f \circ \Omega^f = 1_{\Omega^Y}$. Putting $Y = \Omega^X$, the supposition implies that $\exists_f: Y \to \Omega^Y$ is a retraction. But retractions are automatically point-surjective. We then conclude from Lawvere's fixed point theorem that every endomorphism on $\Omega$, in particular the negation $\neg: \Omega \to \Omega$, has a fixed point $p: 1 \to \Omega$. Then $0 = p \wedge \neg p = p \wedge p = p$, whence $\neg 0 = 0$, or ``true = false'': the topos is degenerate. \end{proof} Once we have a proposition $p$ with $p = \neg p$, another way to conclude the proof is to apply Lawvere's fixed-point theorem again to the surjection $p \to 0^p$, where $p$ is regarded as a [[subsingleton]] and $0$ is the initial object, so that $0^p = \neg p$. This gives a fixed point $1\to 0$ of the identity map $0\to 0$, which again makes the topos degenerate. (The shorter version above is a [[beta-reduction]] of this.) For a formalization of this argument and a generalization thereof to [[universe types]], see \hyperlink{Escardo18}{Escardo18}. \begin{remark} \label{}\hypertarget{}{} Another version of Lawvere's fixed-point theorem requires only finite products for its statement. Namely, in a category with finite products, suppose $\Phi: A \times A \to B$ is a morphism with the property that for each $g: A \to B$ there exists $a: 1 \to A$ such that $g \lambda = \Phi \circ (a \times 1_A)$, where $\lambda: 1 \times A \stackrel{\sim}{\to} A$ is the projection. Then every map $f: B \to B$ has a fixed point. This version of the theorem is emphasized by \hyperlink{Yanofsky03}{Yanofsky}. \end{remark} \begin{remark} \label{}\hypertarget{}{} Many applications of Lawvere's fixed point theorem are in the form of negated propositions, e.g., there is no epimorphism from a set to its power set, or [[Peano arithmetic]] cannot prove its own [[consistency]]. However, there are positive applications as well, e.g., it implies the existence of [[fixed-point combinators]] in [[untyped lambda calculus]]. \end{remark} \hypertarget{History}{}\subsection*{{History}}\label{History} In an interview (\href{William+Lawvere#Interview07}{Lawvere 07}) not long after G\"o{}del's 100th birthday, [[William Lawvere]] answered the question \begin{quote}% We have recently celebrated Kurt G\"o{}del's 100th birthday. What do you think about the extra-mathematical publicity around his incompleteness theorem? \end{quote} by saying (reproduced in \hyperlink{Lawvere69}{Lawvere 69 reprint, p. 2}): \begin{quote}% ``In `Diagonal arguments and Cartesian closed categories' (\hyperlink{Lawvere69}{Lawvere 69}) we demystified the incompleteness theorem of G\"o{}del and the truth-definition theory of Tarski by showing that both are consequences of some very simple algebra in the Cartesian-closed setting. It was always hard for many to comprehend how Cantor's mathematical theorem could be re-christened as a ''paradox`` by Russell and how G\"o{}del's theorem could be so often declared to be the most significant result of the 20th century. There was always the suspicion among scientists that such extra-mathematical publicity movements concealed an agenda for re-establishing belief as a substitute for science. Now, one hundred years after G\"o{}del's birth, the organized attempts to harness his great mathematical work to such an agenda have become explicit. \end{quote} \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[Cantor's theorem]] \item [[fixed-point combinator]] \item [[incompleteness theorem]] \item [[Löb's theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[William Lawvere]], \emph{Diagonal Arguments and Cartesian Closed Categories}, Lecture Notes in Mathematics, 92 (1969), 134-145 (\href{http://tac.mta.ca/tac/reprints/articles/15/tr15abs.html}{TAC}) \end{itemize} A review and further development is in \begin{itemize}% \item [[Noson Yanofsky]], \emph{A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points}, (\href{http://arxiv.org/abs/math/0305282}{arXiv:math/0305282}) \end{itemize} Expositions include \begin{itemize}% \item [[Andrej Bauer]], \emph{On a proof of Cantor's theorem} (\href{http://math.andrej.com/2007/04/08/on-a-proof-of-cantors-theorem/}{web}) \end{itemize} Other references \begin{itemize}% \item [[Martin Escardo]], \emph{On Lawvere's Fixed Point Theorem}, \href{https://www.cs.bham.ac.uk/~mhe/agda-new/LawvereFPT.html}{agda development}, 2018 \end{itemize} [[!redirects Lawvere fixed point theorem]] \end{document}