\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lawvere-Tierney topology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{lawveretierney_topologies}{}\section*{{Lawvere--Tierney topologies}}\label{lawveretierney_topologies} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_closure_operator}{The closure operator}\dotfill \pageref*{the_closure_operator} \linebreak \noindent\hyperlink{sheaves}{Sheaves}\dotfill \pageref*{sheaves} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SheafSubtoposes}{$j$-Sheaf subtoposes}\dotfill \pageref*{SheafSubtoposes} \linebreak \noindent\hyperlink{RelationToGrothendieckTopology}{Equivalence with Grothendieck topologies}\dotfill \pageref*{RelationToGrothendieckTopology} \linebreak \noindent\hyperlink{ClosureOperation}{Relation to lex reflectors}\dotfill \pageref*{ClosureOperation} \linebreak \noindent\hyperlink{enriched_generalization}{Enriched generalization}\dotfill \pageref*{enriched_generalization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{Lawvere--Tierney topology} (or \emph{operator} , or \emph{[[modal logic|modality]]} , also called \emph{\href{modal+type+theory#GeometricModality}{geometric modality}}) on a [[topos]] is a way of saying that something is `locally' [[true]]. Unlike a [[Grothendieck topology]], this is done directly at the stage of [[logic]], defining a \emph{[[geometric logic]]}. In fact, it is a generalisation of Grothendieck topology in this sense: If $C$ is a [[small category]], then choosing a Grothendieck topology on $C$ is equivalent to choosing a Lawvere--Tierney topology in the [[presheaf topos]] $\Set^{C^\op}$ on $C$. The use of ``topology'' for this and the related Grothendieck concept is regarded by some people as unfortunate; see [[historical note on Grothendieck topology]] for some reasons why. A proposed replacement for ``Grothendieck topology'' is [[coverage|(Grothendieck) coverage]]; see [[Grothendieck topology]] for some possible replacements for ``Lawvere--Tierney topology.'' \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $E$ be a [[topos]], with [[subobject classifier]] $\Omega$. \hypertarget{the_closure_operator}{}\subsubsection*{{The closure operator}}\label{the_closure_operator} \begin{defn} \label{LTTopologyDef}\hypertarget{LTTopologyDef}{} A \textbf{Lawvere--Tierney topology} in $E$ is ([[internalization|internally]]) a [[closure operator]] given by a [[exact functor|left exact]] [[idempotent monad]] on the internal meet-[[semilattice]] $\Omega$. This means that: a Lawvere--Tierney topology in $E$ is a [[morphism]] \begin{displaymath} j: \Omega \to \Omega \end{displaymath} such that \begin{enumerate}% \item $j true = true$, equivalently $\id_\Omega \leq j: \Omega \to \Omega$ (`if $p$ is true, then $p$ is locally true') \begin{displaymath} \itexarray{ * &\stackrel{true}{\to}& \Omega \\ & {}_{\mathllap{true}}\searrow & \downarrow^{\mathrlap{j}} \\ && \Omega } \end{displaymath} \item $j j = j$ (`$p$ is locally locally true iff $p$ is locally true'); \begin{displaymath} \itexarray{ \Omega &\stackrel{j}{\to}& \Omega \\ & {}_{\mathllap{j}}\searrow & \downarrow^{\mathrlap{j}} \\ && \Omega } \end{displaymath} \item $j \circ \wedge = \wedge \circ (j \times j)$ (`$p \wedge q$ is locally true iff $p$ and $q$ are each locally true') \begin{displaymath} \itexarray{ \Omega \times \Omega &\stackrel{\wedge}{\to}& \Omega \\ {}^{\mathllap{j \times j}}\downarrow && \downarrow^{\mathrlap{j}} \\ \Omega \times \Omega &\underset{\wedge}{\to}& \Omega } \,. \end{displaymath} \end{enumerate} \end{defn} Here $\leq$ is the internal [[partial order]] on $\Omega$, and $\wedge: \Omega \times \Omega \to \Omega$ is the internal [[meet]]. This appears for instance as (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk, V 1.}). \begin{remark} \label{LTTopologyAsSubobject}\hypertarget{LTTopologyAsSubobject}{} By the definition of [[subobject classifier]] $j$ is equivalently a [[subobject]] \begin{displaymath} J \hookrightarrow \Omega \end{displaymath} satisfying three conditions. This perspective gives the direct relation to [[Grothendieck topologies]], as discussed \href{RelationToGrothendieckTopology}{below}. \end{remark} \begin{remark} \label{}\hypertarget{}{} Equivalently, the third axiom in def. \ref{LTTopologyDef} can be replaced with the (internal) statement that $j$ is order-preserving. The equivalence amounts to the fact that, within the [[internal logic]] of [[topoi]], one can demonstrate that every [[monad]] on the [[preorder]] of [[truth values]] is in fact [[strong monad|strong]] (a special case of the fact that, for an [[endofunctor]] on some [[closed monoidal category|monoidal closed]] $V$, [[tensorial strength|tensorial strengths]] are the same as $V$-[[enriched category|enrichments]], as described in the article on the former), and therefore \emph{automatically} preserves finite meets. Thus, a Lawvere-Tierney topology is the same thing as an internal [[closure operator]] on the preorder $\Omega$ (aka, a [[Moore closure]] on the one-element set), which amounts to the same thing as a natural closure operator on subobjects. Specifically, given any [[subobject]] inclusion $X \hookrightarrow Y$ in $E$, consider its [[characteristic morphism]] $\chi_X: Y \to \Omega$. Then $j \circ \chi_X$ is another morphism $Y \to \Omega$, which defines another subobject $j_*(X)$ of $Y$, taken as the closure of our original subobject. The elements of $j_*(X)$ are those elements of $Y$ that are `locally' in $X$. \end{remark} \begin{defn} \label{TheClosureOperator}\hypertarget{TheClosureOperator}{} The \textbf{[[closure operator]]} induced by $j$ is the [[natural transformation|transformation]] \begin{displaymath} \overline{(-)}_X : Sub(X) \to Sub(X) \end{displaymath} on the [[subobject]] lattice of $X \in E$, [[natural transformation|natural]] in $X$, that is given by the [[commuting diagram]] \begin{displaymath} \itexarray{ Hom(X, \Omega) &\stackrel{\simeq}{\to}& Sub(X) \\ {}^{\mathllap{Hom(1,j)}}\downarrow && \downarrow^{\mathrlap{\overline{(-)}}} \\ Hom(X,\Omega) &\stackrel{\simeq}{\to}& Sub(X) } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} This means that for $U \hookrightarrow X$ a [[subobject]], with characteristic morphism $char U : X \to \Omega$, its closure is the subobject classified by \begin{displaymath} char \overline{U} : X \stackrel{char U}{\to} \Omega \stackrel{j}{\to} \Omega \,. \end{displaymath} \end{remark} This appears for instance as (\href{ MacLaneMoerdijk}{MacLaneMoerdijk, p. 220}). \begin{prop} \label{}\hypertarget{}{} A morphism $j : \Omega \to \Omega$ is a Lawvere-Tierney topology, def. \ref{LTTopologyDef} precisely if the corresponding closure operator, def. \ref{TheClosureOperator} satisfies for all $X, Y \in E$ \begin{enumerate}% \item $A \subset \overline{A}$; \item $\overline{\overline{A}} = \overline{A}$; \item $\overline{A \cap B} = \overline{A} \cap \overline{B}$. \end{enumerate} \end{prop} This appears as (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk, V 1., prop 1}). \hypertarget{sheaves}{}\subsubsection*{{Sheaves}}\label{sheaves} Using Lawvere--Tierney topologies, the notion of [[sheaf]] and [[sheafification]] generalizes from [[Grothendieck topos|Grothendieck topoi]] to arbitrary topoi. Let $E$ be a [[topos]] with Lawvere-Tierney topology $j$, def. \ref{LTTopologyDef} and associated closure operator $\overline{(-)} : Sub(-) \to Sub(-)$, def. \ref{TheClosureOperator}. \begin{defn} \label{DenseMonos}\hypertarget{DenseMonos}{} A subobject $U \in Sub(X)$ is called \textbf{dense} if $\overline{U} = X$. The corresponding [[monomorphism]] $U \hookrightarrow X$ is called a \textbf{[[dense monomorphism]]}. \end{defn} \begin{defn} \label{JSheaf}\hypertarget{JSheaf}{} An object $F \in E$ is called a \textbf{$j$-[[sheaf]]} if it is a [[local object]] with respect to the dense monomorphisms. This means that $F$ is a $j$-sheaf if for every dense $U \hookrightarrow X$ the induced morphism \begin{displaymath} Hom(X,F) \to Hom(U,F) \end{displaymath} is an [[isomorphism]]. $F$ is a \textbf{$j$-[[separated presheaf]]} if this morphism is itself a [[monomorphism]]. \end{defn} This is for instance in (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk, p. 223}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SheafSubtoposes}{}\subsubsection*{{$j$-Sheaf subtoposes}}\label{SheafSubtoposes} \begin{prop} \label{RelationToCoveringSieves}\hypertarget{RelationToCoveringSieves}{} For $E$ a [[topos]] and $j$ a Lawvere-Tierney topology on $E$, the inclusion \begin{displaymath} Sh_j(E) \hookrightarrow E \end{displaymath} of \hyperlink{JSheaf}{j-sheaves} is a [[geometric embedding]]. So in particular $Sh_j(E)$ is itself a [[topos]] and the embedding is a [[full and faithful functor]] which has a [[exact functor|left exact]] [[left adjoint]] functor $E \to Sh_j(E)$: this is called the \textbf{[[sheafification]]} functor. \end{prop} This appears for instance as (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk V 3., theorem 1}). \hypertarget{RelationToGrothendieckTopology}{}\subsubsection*{{Equivalence with Grothendieck topologies}}\label{RelationToGrothendieckTopology} \begin{prop} \label{RelationToCoveringSieves}\hypertarget{RelationToCoveringSieves}{} For $C$ a [[small category]] and $E := [C^{op}, Set]$ its [[presheaf topos]], Lawvere--Tierney topologies in $E$ are equivalent to [[Grothendieck topology|Grothendieck topologies]] on $C$. \end{prop} \begin{proof} The [[subobject classifier]] in a [[presheaf topos]] is the presheaf that assigns to $U \in C$ the set of all [[sieve]]s in $C$ on $U$ \begin{displaymath} \Omega : U \mapsto Sieves_C(U) \,. \end{displaymath} since we have \begin{displaymath} Sieves_C (U)=Sub_C(y(U))=hom(y(U),\Omega)=\Omega(U) \end{displaymath} A [[subobject]] $J \hookrightarrow \Omega$ is therefore precisely a choice of a collection of sieves on each object, which is closed under pullback. The proof therefore amounts to checking that the condition that such a collection of sieves is a [[Grothendieck topology]] on $C$ is equivalent to the statement that the characteristic map $j : \Omega \to \Omega$ of $J \hookrightarrow \Omega$ (see remark \ref{LTTopologyAsSubobject}) is a Lawvere-Tierney topology. \end{proof} Here is more discussion of this point: Suppose that $C$ is a small site. Then given a [[subpresheaf]] inclusion $F \hookrightarrow G$ in $\Set^{C^\op}$, an object $X$ of $C$, and an element $f$ of $G(X)$, we say $f$ is locally in $F$ (that is, $f \in j_*(F)(X)$) if and only if, for some [[cover|covering family]] $c = (c_i: U_i \to X)_i$ on $X$, the restriction $c^*(f)$ of $f$ to $c$ is in $F$ (that is, each $c_i^*(f) \in F(U_i)$). This intuitively defines the ``local'' modality that is the Lawvere--Tierney topology corresponding to the given Grothendieck topology on $C$. As a specific example, take the usual Grothendieck topology on [[Top]], given by the usual notion of open cover. Taking real-valued functions on a space defines a presheaf (in fact a sheaf) $G: X \mapsto [X,R]$ on $\Top$; the constant functions form a subpresheaf $F$ of $G$. A real-valued function $f: X \to R$ belongs to $j_*(F)$ iff it is \emph{locally} constant; that is, for some open cover $(U_i)_i$ of the domain $X$, each restriction $f|U_i$ is constant. To make this precise in terms of the above definition, we need to understand the subobject classifier in $E = Set^{C^{op}}$. But according to the definition, $\Omega$ is simply the representing object for the functor \begin{displaymath} Sub: E^{op} \to Set \end{displaymath} which takes an object $F$ of $E$ to the collection of subobjects of $F$, $Sub(F)$. In other words, $Sub(F) \cong \hom_E(F, \Omega)$. Applied to $F = \hom_C(-, c)$, we have then \begin{displaymath} Sub(\hom_C(-, c)) \cong \hom_{Set^{C^{op}}}(\hom_C(-, c), \Omega) \stackrel{Yoneda}{\cong} \Omega(c) \end{displaymath} In other words, we find that the functor $\Omega: C^{op} \to Set$ is defined by \begin{displaymath} \Omega(c) = \{sieves\,on\,c\} \end{displaymath} Next, if $J$ is a Grothendieck topology on $C$, then the collection of $J$-covering sieves on $c$ (which we denote by $J(c)$( is a subcollection of all sieves on $c$, and so we have an inclusion \begin{displaymath} J(c) \hookrightarrow \Omega(c) \end{displaymath} and this inclusion is natural in $c$, by virtue of the first axiom on covering sieves. Thus we have a subobject \begin{displaymath} J \hookrightarrow \Omega \end{displaymath} and again, by definition of subobject classifier, this subobject corresponds to a uniquely determined element \begin{displaymath} j \in \hom_E(\Omega, \Omega) \end{displaymath} which is just the Lawvere--Tierney operator $j: \Omega \to \Omega$. Conversely, any morphism $j:\Omega\to\Omega$ determines a subobject $J$ of $\Omega$, which therefore associates to every object $c$ a set of sieves on $c$. It is easy to check that the axioms for covering sieves in a Grothendieck topology correspond exactly to the required properties of the operator $j$. \begin{prop} \label{}\hypertarget{}{} For $C$ a [[small site]] and $j$ the Lawvere-Tierney topology on the [[presheaf topos]] $E = [C^{op}, Set]$ given by prop. \ref{RelationToCoveringSieves} the \hyperlink{SheafSubtoposes}{j-sheaves} are precisely the [[sheaves]] in the ordinary sense of Grothendieck topologies. \end{prop} \hypertarget{ClosureOperation}{}\subsubsection*{{Relation to lex reflectors}}\label{ClosureOperation} As discussed there, [[categories of sheaves]] are also characterized as being [[reflective subcategories]] of the given ambient topos \begin{displaymath} Sh_j(\mathcal{E}) \stackrel{\overset{L}{\leftarrow}}{\underset{}{\hookrightarrow}} \mathcal{E} \,. \end{displaymath} Here we discuss explicit translations between the structure given by the [[localization|reflector]] $L$ and the corresponding Lawvere-Tierney topology $j : \Omega \to \Omega$ in a way that makes the relation to [[modal type theory]] and [[monads (in computer science)]] most manifest. \begin{defn} \label{ClosureOperatorOfReflection}\hypertarget{ClosureOperatorOfReflection}{} Given a reflector $\sharp : \mathcal{E} \stackrel{L}{\to} Sh_j(\mathcal{E}) \hookrightarrow \mathcal{E}$, define for each object $X \in \mathcal{E}$ a \textbf{closure operator}, being a [[functor]] on the [[poset of subobjects]] of $X$ \begin{displaymath} c_L : Sub(X) \to Sub(X) \,, \end{displaymath} by sending any [[monomorphism]] $A \hookrightarrow X$ classified by a [[characteristic function]] $\chi_A : X \to \Omega$ to the [[pullback]] $c_L(A)$ in \begin{displaymath} \itexarray{ c_L(A) &\to& \sharp A \\ \downarrow && \downarrow \\ X &\to& \sharp X } \,, \end{displaymath} where $X \to \sharp X$ is the [[unit of an adjunction|adjunction unit]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} This is well defined. Moreover, $c_L$ commutes with [[pullback]] ([[change of base]]). \end{prop} This appears as (\hyperlink{Johnstone}{Johnstone, lemma A4.3.2}). \begin{defn} \label{}\hypertarget{}{} A family of functors $Sub(X) \to Sub(X)$ for all objects $X$ that commutes with [[change of base]] is called a \textbf{[[universal closure operation]]}. \end{defn} \begin{prop} \label{}\hypertarget{}{} Given a [[left exact functor|left exact]] reflector $\sharp$ as above with induced closure operation $c_L$, the corresponding Lawvere-Tierney operator $j : \Omega \to \Omega$ is given as the composite \begin{displaymath} j : \Omega \to \sharp \Omega \stackrel{\chi_{\sharp true}}{\to} \Omega \,, \end{displaymath} where \begin{itemize}% \item $\Omega \to \sharp \Omega$ is the [[unit of an adjunction|adjunction unit]]; \item $\chi_{\sharp true} : \sharp \Omega \to \Omega$ is the [[characteristic function]] of the result of applying $\sharp$ to the [[subobject classifier|universal subobject]] \begin{displaymath} (* \stackrel{\sharp true}{\hookrightarrow} \sharp \Omega) := \sharp (* \stackrel{true}{\hookrightarrow} \Omega) \end{displaymath} (which is again a [[monomorphism]] since $\sharp$ preserves [[pullbacks]]). \end{itemize} \end{prop} \begin{proof} For $A \hookrightarrow X$ any [[subobject]] with [[characteristic function]] $\chi_A : X \to \Omega$, we need to show that we have a [[pullback]] [[diagram]] \begin{displaymath} \itexarray{ c_L(A) &\to& &\to& &\to& * \\ \downarrow && && && \downarrow \\ X &\stackrel{\chi_A}{\to}& \Omega &\stackrel{}{\to}& \sharp \Omega &\stackrel{}{\to}& \Omega } \,. \end{displaymath} The pullback along the rightmost morphism is by definition $# * \to \sharp \Omega$ \begin{displaymath} \itexarray{ c_L(A) &\to& &\to& # * = * &\to& * \\ \downarrow && && \downarrow && \downarrow \\ X &\stackrel{\chi_A}{\to}& \Omega &\stackrel{}{\to}& \sharp \Omega &\stackrel{}{\to}& \Omega } \,. \end{displaymath} Moreover, by the [[natural transformation|naturality]] of the [[unit of an adjunction|adjunction unit]] we have a [[commuting diagram]] \begin{displaymath} \itexarray{ X &\to& \sharp X \\ {}^{\mathllap{\chi_A}}\downarrow && \downarrow^{\mathrlap{\sharp \chi_A}} \\ \Omega &\to& \sharp \Omega } \,. \end{displaymath} Using this in the remaining bottom morphism of our would-be pullback square we find that equivalently \begin{displaymath} \itexarray{ c_L(A) &\to& &\to& # * = * &\to& * \\ \downarrow && && \downarrow && \downarrow \\ X &\stackrel{}{\to}& \sharp X &\stackrel{\sharp \chi_A}{\to}& \sharp \Omega &\stackrel{}{\to}& \Omega } \end{displaymath} needs to be a pullback diagram. Since $\sharp$ preserves pullbacks we have that also the middle square in \begin{displaymath} \itexarray{ c_L(A) &\to& \sharp A &\to& # * = * &\to& * \\ \downarrow && \downarrow && \downarrow && \downarrow \\ X &\stackrel{}{\to}& \sharp X &\stackrel{\sharp \chi_A}{\to}& \sharp \Omega &\stackrel{}{\to}& \Omega } \end{displaymath} is a pullback. But then also the left square is a pullback, by def. \ref{ClosureOperatorOfReflection}. This finally means, by the [[pasting law]], that also the total rectangle is a pullback. \end{proof} \begin{remark} \label{}\hypertarget{}{} Equivalently, by the [[pasting law]], we have that $j : \Omega \to \Omega$ is the [[characteristic function]] of the $L$-closure, def. \ref{ClosureOperatorOfReflection}, of the universal subobject $* \to \Omega$, because we have a [[pasting diagram]] of [[pullback]] squares \begin{displaymath} \itexarray{ c_L(*) &\to& \sharp * = * &\to & * \\ \downarrow && \downarrow && \downarrow \\ \Omega &\to& \sharp \Omega &\stackrel{\chi_{\sharp true}}{\to} & \Omega } \,. \end{displaymath} In this form the statement appears in the proof of (\hyperlink{Johnstone}{Johnstone, Theorem A4.3.9}). \end{remark} \hypertarget{enriched_generalization}{}\subsection*{{Enriched generalization}}\label{enriched_generalization} \begin{itemize}% \item [[Francis Borceux]], \emph{Algebraic localizations and elementary toposes} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{21} no.4 (1980) pp.393-401.(\href{http://archive.numdam.org/article/CTGDC_1980__21_4_393_0.pdf}{pdf}) \item Francis Borceux, \emph{Sheaves of algebras for a commutative theory}, Ann. Soc. Sci. Bruxelles S\'e{}r. I \textbf{95} (1981), no. 1, 3--19, \href{http://www.ams.org/mathscinet-getitem?mr=628032}{MR83c:18006} \end{itemize} Let $\mathcal{C}$ be a small category enriched over $Set^{T}$ where $T$ is a [[commutative algebraic theory]]. Then $[\mathcal{C}^{op},\text{Set}^{T}]$. A $T$-sieve as an enriched subfunctor of $\mathcal{C}(-,x)\colon\mathcal{C}^{op}\rightarrow\text{Set}^{T}$. A $\mathbf{T}$-topology is a set $J(x)$ of $\mathbf{T}$-sieves for every $x$, satisfying some axioms. Borceux defines the notion of a sheaf over such enriched site and proves the existence and exactness of the associated sheaf functor. He proves that there is an object $\Omega_{T}$ in $[\mathcal{C}^{op},\text{Set}]$ which classifies subobjects in $[\mathcal{C}^{op},\text{Set}^{T}]$. Moreover, there is a correspondence betwen (1) localizations of $[\mathcal{C}^{\text{op}},\text{Set}^{T}]$ (2) $T$-topologies on $\mathcal{C}$ (3) morphisms $j\colon\Omega_{\mathbf{T}}\rightarrow\Omega_{T}$ satisfying the Lawvere-Tierney axioms for a topology \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[modality]] [[modal type theory]] \item [[monad (in programming theory)]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion is introduced as a [[geometric modality]] on p. 3 of \begin{itemize}% \item [[William Lawvere]], \emph{Quantifiers and sheaves}, Actes, Congr\`e{}s intern, math., 1970. Tome 1, p. 329 \`a{} 334 (\href{http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0329.0334.ocr.pdf}{pdf}) \end{itemize} Detailed discussion of Lawvere-Tierney operators as [[geometric modalities]] is in \begin{itemize}% \item [[Robert Goldblatt]], \emph{Grothendieck topology as geometric modality}, Mathematical Logic Quarterly, Volume 27, Issue 31-35, pages 495--529, (1981) \end{itemize} Textbook accounts include section V.1 of \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]}, \end{itemize} (the notion of sheaves in section V.3, the sheafification functor in section V.3 and the relation to Grothendieck topologies in section V.4); and section A4.4 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} Discussion in [[homotopy type theory]] is in \begin{itemize}% \item Kevin Quirin, Nicolas Tabareau, \emph{Lawvere-Tierney sheafification in Homotopy Type Theory}, Journal of Formalized Reasoning, Vol 9, No 2, (2016) (\href{https://jfr.unibo.it/article/view/6232}{web}) \end{itemize} [[!redirects sheafification in a Lawvere-Tierney topos]] [[!redirects sheafification in a Lawvere–Tierney topos]] [[!redirects sheafification in a Lawvere--Tierney topos]] [[!redirects Lawvere-Tierney topology]] [[!redirects Lawvere–Tierney topology]] [[!redirects Lawvere--Tierney topology]] [[!redirects Lawvere-Tierney topologies]] [[!redirects Lawvere–Tierney topologies]] [[!redirects Lawvere--Tierney topologies]] [[!redirects Lawvere-Tierney operator]] [[!redirects Lawvere–Tierney operator]] [[!redirects Lawvere--Tierney operator]] [[!redirects Lawvere-Tierney operators]] [[!redirects Lawvere–Tierney operators]] [[!redirects Lawvere--Tierney operators]] [[!redirects local modality]] [[!redirects local modalities]] \end{document}