\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lebesgue space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definitions}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{MinkowskiInequality}{Minkowski's inequality}\dotfill \pageref*{MinkowskiInequality} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term `Lebesgue space' can stand for two distinct notions: one is the general notion of [[measure space]] (compare the \href{http://eom.springer.de/L/l057910.htm}{Springer Encyclopaedia of Mathematics}) and another is the notion of $L^p$ space (or $L_p$ space). Here we discuss the latter. Lebesgue spaces $L^p$ in this sense are [[normed vector spaces]] of [[functions]] on a [[measure space]], equipped with the suitable version of the [[p-norm]]. Beware that sometimes the notation `$L_p$' is used as a synonym for $L^p$; sometimes it is used to mean $L^{1/p}$. \hypertarget{Definition}{}\subsection*{{Definitions}}\label{Definition} If $1 \leq p \lt \infty$ is a [[real number]] and $(\Omega,\mu)$ is a [[measure space]], one considers the \textbf{$L^p$ space} $L_p(\Omega)$, which is the [[vector space]] of [[equivalence classes]] of those [[measurable function|measurable]] (complex- or real-valued) functions $f\colon \Omega \to \mathbb{K}$ whose (absolute values of) $p$th powers are integrable, in that the integral \begin{displaymath} {\|f\|_p} \coloneqq \left(\int_\Omega {|f|^p} \,d\mu\right)^{1/p} \lt \infty \end{displaymath} exists. Two such are taken to be equivalent, $f \sim g$, if ${\|f-g\|_p} = 0$. For $p = 2$ this is the space $L^2$ of [[square integrable functions]]. On these spaces $L^p(X)$ of equivalence classes of $p$-power integrable functions, the function ${\|f\|_p}$ satisfies the [[triangle inequality]] (due to [[Minkowski's inequality]], see \hyperlink{MinkowskiInequality}{below}) and hence defines a [[norm]], the \emph{[[p-norm]]}, making them [[normed vector spaces]]. The $L^p$ spaces are examples of [[Banach spaces]]; they are continuous analogues of $l^p$ spaces of $p$-summable series. (Indeed, $l^p(S)$, for $S$ a [[set]], is simply $L^p(S)$ if $S$ is equipped with [[counting measure]].) For fixed $f$, the norm ${\|f\|_p}$ is continuous in $p$. Accordingly, for $p = \infty$, one may take the limit of ${\|f\|}_p$ as $p \to \infty$. However, this turns out to be the same as the [[essential supremum]] norm $\|f\|_\infty$. Therefore, $L^\infty(\Omega)$ makes sense as long as $\Omega$ is a [[measurable space]] equipped with a family of [[null sets]] (or [[full sets]]); the measure $\mu$ is otherwise irrelevant. For $0 \leq p \lt 1$, one can modify the definition to make $L^p$ into an [[F-space]] (but not a Banach space). See the definitions at [[p-norm]]. \hypertarget{MinkowskiInequality}{}\subsection*{{Minkowski's inequality}}\label{MinkowskiInequality} We offer here a proof that ${\|f\|_p}$ indeed defines a norm in the case $1 \lt p \lt \infty$, in that it satisfies the [[triangle inequality]]. This is usually known as \emph{[[Minkowski's inequality]]}. (The cases $p = 1$ and $p = \infty$ follow by continuity and are easy to check from first principles.) The most usual textbook proofs involve a clever application of [[Hölder's inequality]]; the following proof is more straightforwardly geometric. All functions $f$ may be assumed to be real- or complex-valued. \begin{theorem} \label{}\hypertarget{}{} Suppose $1 \leq p \leq \infty$, and suppose $\Omega$ is a [[measure space]] with [[measure]] $\mu$. Then the function ${|(-)|_p}\colon L^p(\Omega, \mu) \to \mathbb{R}$ defined by \begin{displaymath} {\|f\|_p} \coloneqq (\int_\Omega {|f|^p} \,d\mu)^{1/p} \end{displaymath} defines a [[norm]]. \end{theorem} One must verify three things: \begin{enumerate}% \item Separation axiom: ${\|f\|_p} = 0$ implies $f = 0$. \item Scaling axiom: ${\|t f\|}_p = {|t|} \, {\|f\|_p}$. \item Triangle inequality: ${\|f + g\|_p} \leq {\|f\|_p} + {\|g\|_p}$. \end{enumerate} The first two properties are obvious, so it remains to prove the last, which is also called \textbf{[[Minkowski's inequality]]}. Our proof of Minkowski's inequality is broken down into a series of simple lemmas. The plan is to boil it down to two things: the scaling axiom, and convexity of the function $x \mapsto {|x|^p}$ (as a function from real or complex numbers to nonnegative real numbers). First, some generalities. Let $V$ be a (real or complex) vector space equipped with a function ${\|(-)\|}\colon V \to [0, \infty]$ that satisfies the scaling axiom: ${\|t v\|} = {|t|} \, {\|v\|}$ for all scalars $t$, and the separation axiom: ${\|v\|} = 0$ implies $v = 0$. As usual, we define the [[unit ball]] in $V$ to be $\{v \in V \;|\; {\|v\|} \leq 1\}.$ \begin{lemma} \label{conditions}\hypertarget{conditions}{} Given that the scaling and separation axioms hold, the following conditions are equivalent: \begin{enumerate}% \item The triangle inequality is satisfied. \item The unit ball is convex. \item If ${\|u\|} = {\|v\|} = 1$, then ${\|t u + (1-t)v\|} \leq 1$ for all $t \in [0, 1]$. \end{enumerate} \end{lemma} \begin{proof} Condition 1. implies condition 2. easily: if $u$ and $v$ are in the unit ball and $0 \leq t \leq 1$, we have \begin{displaymath} \itexarray{ {\|t u + (1-t)v\|} & \leq & {\|t u\|} + {\|(1-t)v\|} \\ & = & t {\|u\|} + (1-t) {\|v\|} \\ & \leq & t + (1-t) = 1.} \end{displaymath} Now 2. implies 3. trivially, so it remains to prove that 3. implies 1. Suppose ${\|v\|}, {\|v'\|} \in (0, \infty)$. Let $u = \frac{v}{{\|v\|}}$ and $u' = \frac{v'}{{\|v'\|}}$ be the associated unit vectors. Then \begin{displaymath} \itexarray{ \frac{v + v'}{{\|v\|}+{\|v'\|}} & = & (\frac{{\|v\|}}{{\|v\|}+{\|v'\|}})\frac{v}{{\|v\|}} + (\frac{{\|v'\|}}{{\|v\|}+{\|v'\|}})\frac{v'}{{\|v'\|}} \\ & = & t u + (1-t)u'} \end{displaymath} where $t = \frac{{\|v\|}}{{\|v\|} + {\|v'\|}}$. If condition 3. holds, then \begin{displaymath} {\|t u + (1-t)u'\|} \leq 1 \end{displaymath} but by the scaling axiom, this is the same as saying \begin{displaymath} \frac{{\|v + v'\|}}{{\|v\|} + {\|v'\|}} \leq 1, \end{displaymath} which is the triangle inequality. \end{proof} Consider now $L^p$ with its $p$-norm ${\|f\|} = {|f|_p}$. By Lemma \ref{conditions}, this inequality is equivalent to \begin{itemize}% \item \textbf{Condition 4:} If ${|u|_{p}^{p}} = 1$ and ${|v|_{p}^{p}} = 1$, then ${|t u + (1-t)v|_{p}^{p}} \leq 1$ whenever $0 \leq t \leq 1$. \end{itemize} This allows us to remove the cumbersome exponent $1/p$ in the definition of the $p$-norm. The next two lemmas may be proven by elementary calculus; we omit the proofs. (But you can also see the \href{http://ncatlab.org/toddtrimble/published/p-norms}{full details}.) \begin{lemma} \label{2deriv}\hypertarget{2deriv}{} Let $\alpha, \beta$ be two complex numbers, and define \begin{displaymath} \gamma(t) = {|\alpha + \beta t|^p} \end{displaymath} for \emph{real} $t$. Then $\gamma''(t)$ is nonnegative. \end{lemma} \begin{lemma} \label{convex}\hypertarget{convex}{} Define $\phi\colon \mathbb{C} \to \mathbb{R}$ by $\phi(x) = |x|^p$. Then $\phi$ is convex, i.e., for all $x, y$, \begin{displaymath} {|t x + (1-t)y|^p} \leq t{|x|^p} + (1-t){|y|^p} \end{displaymath} for all $t \in [0, 1]$. \end{lemma} \begin{proof} Let $u$ and $v$ be unit vectors in $L^p$. By condition 4, it suffices to show that ${|t u + (1-t)v|_p} \leq 1$ for all $t \in [0, 1]$. But \begin{displaymath} \int_\Omega {|t u + (1-t)v|^p} \,d\mu \leq \int_\Omega t{|u|}^p + (1-t){|v|}^p \,d\mu \end{displaymath} by Lemma \ref{convex}. Using $\int {|u|^p} = 1 = \int {|v|^p}$, we are done. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[square integrable function]] \item [[canonical Hilbert space of half-densities]] \item [[tempered distribution]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after [[Henri Lebesgue]]. \begin{itemize}% \item W. Rudin, \emph{Functional analysis}, McGraw Hill 1991. \item L. C. Evans, \emph{Partial differential equations}, Amer. Math. Soc. 1998. \item Wikipedia (English): \href{http://en.wikipedia.org/wiki/Lp_space}{Lp space} \end{itemize} category: analysis [[!redirects Lebesgue space]] [[!redirects Lebesgue spaces]] [[!redirects L-p space]] [[!redirects L-p spaces]] [[!redirects L-p-space]] [[!redirects L-p-spaces]] [[!redirects L{\tt \symbol{94}}p space]] [[!redirects L{\tt \symbol{94}}p spaces]] [[!redirects L\_p space]] [[!redirects L\_p spaces]] [[!redirects L-1 space]] [[!redirects L-1 spaces]] [[!redirects L-1-space]] [[!redirects L-1-spaces]] [[!redirects L{\tt \symbol{94}}1 space]] [[!redirects L{\tt \symbol{94}}1 spaces]] [[!redirects L\_1 space]] [[!redirects L\_1 spaces]] [[!redirects L-2 space]] [[!redirects L-2 spaces]] [[!redirects L-2-space]] [[!redirects L-2-spaces]] [[!redirects L{\tt \symbol{94}}2 space]] [[!redirects L{\tt \symbol{94}}2 spaces]] [[!redirects L\_2 space]] [[!redirects L\_2 spaces]] \end{document}