\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lectures on Étale Cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{tale_morphisms}{}\paragraph*{{\'E{}tale morphisms}}\label{tale_morphisms} [[!include etale morphisms - contents]] This page collects links related to \begin{itemize}% \item [[James Milne]], \emph{Lectures on \'E{}tale Cohomology} (\href{http://www.jmilne.org/math/CourseNotes/lec.html}{html}, \href{http://www.jmilne.org/math/CourseNotes/LEC.pdf}{pdf}) \end{itemize} based on the textbook \begin{itemize}% \item \emph{\'E{}tale Cohomology}, Princeton Mathematical Series 33, 1980. xiii+323 pp. \end{itemize} on [[étale cohomology]] and the [[proof]] of the [[Weil conjectures]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{i_basic_theory}{\textbf{I} Basic theory}\dotfill \pageref*{i_basic_theory} \linebreak \noindent\hyperlink{1_introduction}{1. Introduction}\dotfill \pageref*{1_introduction} \linebreak \noindent\hyperlink{2_tale_morphisms}{2. \'E{}tale morphisms}\dotfill \pageref*{2_tale_morphisms} \linebreak \noindent\hyperlink{3_the_tale_fundamental_group}{3. The \'e{}tale fundamental group}\dotfill \pageref*{3_the_tale_fundamental_group} \linebreak \noindent\hyperlink{4_the_local_ring_for_the_tale_topology}{4. The local ring for the \'e{}tale topology}\dotfill \pageref*{4_the_local_ring_for_the_tale_topology} \linebreak \noindent\hyperlink{5_sites}{5. Sites}\dotfill \pageref*{5_sites} \linebreak \noindent\hyperlink{6_sheaves_for_the_tale_topology}{6. Sheaves for the \'e{}tale topology}\dotfill \pageref*{6_sheaves_for_the_tale_topology} \linebreak \noindent\hyperlink{7_the_category_of_sheaves_on_}{7. The category of sheaves on $X_{et}$}\dotfill \pageref*{7_the_category_of_sheaves_on_} \linebreak \noindent\hyperlink{8_direct_and_inverse_image_sheaves}{8. Direct and inverse image sheaves}\dotfill \pageref*{8_direct_and_inverse_image_sheaves} \linebreak \noindent\hyperlink{9_cohomology_definition_and_basic_properties}{9. Cohomology: Definition and basic properties}\dotfill \pageref*{9_cohomology_definition_and_basic_properties} \linebreak \noindent\hyperlink{10_cech_cohomology}{10. Cech cohomology}\dotfill \pageref*{10_cech_cohomology} \linebreak \noindent\hyperlink{11_principal_homogeneous_spaces_and_}{11. Principal homogeneous spaces and $H^i$}\dotfill \pageref*{11_principal_homogeneous_spaces_and_} \linebreak \noindent\hyperlink{12_higher_direct_images_the_leray_spectral_sequence}{12. Higher direct images; the Leray spectral sequence}\dotfill \pageref*{12_higher_direct_images_the_leray_spectral_sequence} \linebreak \noindent\hyperlink{13_the_weildivisor_exact_sequence_and_the_cohomology_of_}{13. The Weil-divisor exact sequence and the cohomology of $\mathbb{G}_m$}\dotfill \pageref*{13_the_weildivisor_exact_sequence_and_the_cohomology_of_} \linebreak \noindent\hyperlink{14_the_cohomology_of_curves}{14. The cohomology of curves}\dotfill \pageref*{14_the_cohomology_of_curves} \linebreak \noindent\hyperlink{15_cohomological_dimension}{15. Cohomological dimension}\dotfill \pageref*{15_cohomological_dimension} \linebreak \noindent\hyperlink{16_purity_the_gysin_sequence}{16. Purity; the Gysin sequence}\dotfill \pageref*{16_purity_the_gysin_sequence} \linebreak \noindent\hyperlink{17_the_proper_base_change_theorem}{17. The proper base change theorem}\dotfill \pageref*{17_the_proper_base_change_theorem} \linebreak \noindent\hyperlink{18_cohomology_groups_with_compact_support}{18. Cohomology groups with compact support}\dotfill \pageref*{18_cohomology_groups_with_compact_support} \linebreak \noindent\hyperlink{19_finiteness_theorem_sheaves_of_modules}{19. Finiteness theorem; Sheaves of $\mathbb{Z}_l$-modules}\dotfill \pageref*{19_finiteness_theorem_sheaves_of_modules} \linebreak \noindent\hyperlink{20_the_smooth_base_change_theorem}{20. The smooth base change theorem}\dotfill \pageref*{20_the_smooth_base_change_theorem} \linebreak \noindent\hyperlink{21_the_comparison_theorem}{21. The comparison theorem}\dotfill \pageref*{21_the_comparison_theorem} \linebreak \noindent\hyperlink{22_the_knneth_formula}{22. The K\"u{}nneth formula}\dotfill \pageref*{22_the_knneth_formula} \linebreak \noindent\hyperlink{23_the_cycle_map_chern_classes}{23. The cycle map; Chern classes}\dotfill \pageref*{23_the_cycle_map_chern_classes} \linebreak \noindent\hyperlink{24_poincar_duality}{24. Poincar\'e{} duality}\dotfill \pageref*{24_poincar_duality} \linebreak \noindent\hyperlink{25_lefschetz_fixedpoint_formula}{25. Lefschetz fixed-point formula}\dotfill \pageref*{25_lefschetz_fixedpoint_formula} \linebreak \noindent\hyperlink{ii_proof_of_the_weil_conjectures}{\textbf{II} Proof of the Weil conjectures}\dotfill \pageref*{ii_proof_of_the_weil_conjectures} \linebreak \noindent\hyperlink{26_the_weil_conjecture}{26. The Weil conjecture}\dotfill \pageref*{26_the_weil_conjecture} \linebreak \noindent\hyperlink{27_proof_of_the_weil_conjectures_except_for_the_riemann_hypothesis}{27. Proof of the Weil conjectures, except for the Riemann hypothesis}\dotfill \pageref*{27_proof_of_the_weil_conjectures_except_for_the_riemann_hypothesis} \linebreak \noindent\hyperlink{28_preliminary_reductions}{28. Preliminary reductions}\dotfill \pageref*{28_preliminary_reductions} \linebreak \noindent\hyperlink{29_the_lefschetz_fixed_point_formula_for_nonconstant_sheaves}{29. The Lefschetz fixed point formula for non-constant sheaves}\dotfill \pageref*{29_the_lefschetz_fixed_point_formula_for_nonconstant_sheaves} \linebreak \noindent\hyperlink{30_the_main_lemma}{30. The main lemma}\dotfill \pageref*{30_the_main_lemma} \linebreak \noindent\hyperlink{31_the_geometry_of_lefschetz_pencils}{31. The geometry of Lefschetz pencils}\dotfill \pageref*{31_the_geometry_of_lefschetz_pencils} \linebreak \noindent\hyperlink{32_the_cohomology_of_lefschetz_pencils}{32. The cohomology of Lefschetz pencils}\dotfill \pageref*{32_the_cohomology_of_lefschetz_pencils} \linebreak \noindent\hyperlink{33_completion_of_the_proof_of_the_weil_conjecture}{33. Completion of the proof of the Weil conjecture}\dotfill \pageref*{33_completion_of_the_proof_of_the_weil_conjecture} \linebreak \noindent\hyperlink{34_the_geometry_of_estimates}{34. The geometry of estimates}\dotfill \pageref*{34_the_geometry_of_estimates} \linebreak \hypertarget{i_basic_theory}{}\subsection*{{\textbf{I} Basic theory}}\label{i_basic_theory} \hypertarget{1_introduction}{}\subsubsection*{{1. Introduction}}\label{1_introduction} \hypertarget{2_tale_morphisms}{}\subsubsection*{{2. \'E{}tale morphisms}}\label{2_tale_morphisms} \begin{itemize}% \item [[formally étale morphism]] \item [[étale morphism of schemes]] \item [[tangent cone]] \item [[unramified morphism of schemes]] \end{itemize} \hypertarget{3_the_tale_fundamental_group}{}\subsubsection*{{3. The \'e{}tale fundamental group}}\label{3_the_tale_fundamental_group} \begin{itemize}% \item [[étale fundamental group]] \item [[étale homotopy type]] \end{itemize} \hypertarget{4_the_local_ring_for_the_tale_topology}{}\subsubsection*{{4. The local ring for the \'e{}tale topology}}\label{4_the_local_ring_for_the_tale_topology} \begin{itemize}% \item [[germ]] \item [[local ring]] \item [[locally ringed topological space]] \item [[Henselian ring]] \item [[geometric point]] \end{itemize} \hypertarget{5_sites}{}\subsubsection*{{5. Sites}}\label{5_sites} \begin{itemize}% \item [[site]] \item [[presheaf]] \item [[sheaf]] \end{itemize} \hypertarget{6_sheaves_for_the_tale_topology}{}\subsubsection*{{6. Sheaves for the \'e{}tale topology}}\label{6_sheaves_for_the_tale_topology} \begin{itemize}% \item [[Galois cover]] \item [[descent]] \item [[structure sheaf]] \item [[sheaf of coherent modules]] \item [[stalk]] \item [[skyscraper sheaf]] \item [[locally constant sheaf]] \end{itemize} \hypertarget{7_the_category_of_sheaves_on_}{}\subsubsection*{{7. The category of sheaves on $X_{et}$}}\label{7_the_category_of_sheaves_on_} \begin{itemize}% \item [[additive and abelian categories]] \item [[category of presheaves]] \item [[category of sheaves]] \item [[sheafification]] \item [[algebraic space]] \item [[étale topos]] \end{itemize} \hypertarget{8_direct_and_inverse_image_sheaves}{}\subsubsection*{{8. Direct and inverse image sheaves}}\label{8_direct_and_inverse_image_sheaves} \begin{itemize}% \item [[direct image]] \item [[inverse image]] \item [[injective module]] \item [[enough injectives]] \end{itemize} \hypertarget{9_cohomology_definition_and_basic_properties}{}\subsubsection*{{9. Cohomology: Definition and basic properties}}\label{9_cohomology_definition_and_basic_properties} \begin{itemize}% \item [[cohomology]] \item [[abelian sheaf cohomology]] \item [[left exact functor]] \item [[global section functor]] \item [[derived functor]] \item [[Ext]] \item [[excision]] \end{itemize} \hypertarget{10_cech_cohomology}{}\subsubsection*{{10. Cech cohomology}}\label{10_cech_cohomology} \begin{itemize}% \item [[Cech cohomology]] \item [[Grothendieck spectral sequence]] \end{itemize} \hypertarget{11_principal_homogeneous_spaces_and_}{}\subsubsection*{{11. Principal homogeneous spaces and $H^i$}}\label{11_principal_homogeneous_spaces_and_} \begin{itemize}% \item [[principal homogeneous space]], [[torsor]], [[principal bundle]] \item [[nonabelian cohomology]] \item [[gerbe]] \end{itemize} \hypertarget{12_higher_direct_images_the_leray_spectral_sequence}{}\subsubsection*{{12. Higher direct images; the Leray spectral sequence}}\label{12_higher_direct_images_the_leray_spectral_sequence} \begin{itemize}% \item [[derived functor]] \item [[Leray spectral sequence]] \end{itemize} \hypertarget{13_the_weildivisor_exact_sequence_and_the_cohomology_of_}{}\subsubsection*{{13. The Weil-divisor exact sequence and the cohomology of $\mathbb{G}_m$}}\label{13_the_weildivisor_exact_sequence_and_the_cohomology_of_} \begin{itemize}% \item [[Weil divisor]] \item [[function field]] \item [[Brauer group]] \end{itemize} \hypertarget{14_the_cohomology_of_curves}{}\subsubsection*{{14. The cohomology of curves}}\label{14_the_cohomology_of_curves} \begin{itemize}% \item [[Picard group]] \item [[Poincaré duality]] \item [[Hochschild-Serre spectral sequence]] \end{itemize} \hypertarget{15_cohomological_dimension}{}\subsubsection*{{15. Cohomological dimension}}\label{15_cohomological_dimension} \begin{itemize}% \item [[cohomological dimension]] \end{itemize} \hypertarget{16_purity_the_gysin_sequence}{}\subsubsection*{{16. Purity; the Gysin sequence}}\label{16_purity_the_gysin_sequence} \begin{itemize}% \item [[Gysin sequence]] \end{itemize} \hypertarget{17_the_proper_base_change_theorem}{}\subsubsection*{{17. The proper base change theorem}}\label{17_the_proper_base_change_theorem} \begin{itemize}% \item [[proper morphism of schemes]] \item [[constructible sheaf]] \item [[Beck-Chevalley condition]] \item [[proper base change theorem]] \end{itemize} \hypertarget{18_cohomology_groups_with_compact_support}{}\subsubsection*{{18. Cohomology groups with compact support}}\label{18_cohomology_groups_with_compact_support} \begin{itemize}% \item [[cohomology with compact support]] \end{itemize} \hypertarget{19_finiteness_theorem_sheaves_of_modules}{}\subsubsection*{{19. Finiteness theorem; Sheaves of $\mathbb{Z}_l$-modules}}\label{19_finiteness_theorem_sheaves_of_modules} \begin{itemize}% \item [[ℓ-adic cohomology]] \end{itemize} \hypertarget{20_the_smooth_base_change_theorem}{}\subsubsection*{{20. The smooth base change theorem}}\label{20_the_smooth_base_change_theorem} \begin{itemize}% \item [[proper base change theorem]] \end{itemize} \hypertarget{21_the_comparison_theorem}{}\subsubsection*{{21. The comparison theorem}}\label{21_the_comparison_theorem} \begin{itemize}% \item [[complex analytic topology]] \item [[Riemann existence theorem]] \item [[comparison theorem (étale cohomology)]] \end{itemize} \hypertarget{22_the_knneth_formula}{}\subsubsection*{{22. The K\"u{}nneth formula}}\label{22_the_knneth_formula} \begin{itemize}% \item [[Künneth theorem]] \end{itemize} \hypertarget{23_the_cycle_map_chern_classes}{}\subsubsection*{{23. The cycle map; Chern classes}}\label{23_the_cycle_map_chern_classes} \begin{itemize}% \item [[Chern class]] \end{itemize} \hypertarget{24_poincar_duality}{}\subsubsection*{{24. Poincar\'e{} duality}}\label{24_poincar_duality} \begin{itemize}% \item [[Poincaré duality]] \item [[Verdier duality]] \end{itemize} \hypertarget{25_lefschetz_fixedpoint_formula}{}\subsubsection*{{25. Lefschetz fixed-point formula}}\label{25_lefschetz_fixedpoint_formula} \begin{itemize}% \item [[Lefschetz fixed-point formula]] \end{itemize} \hypertarget{ii_proof_of_the_weil_conjectures}{}\subsection*{{\textbf{II} Proof of the Weil conjectures}}\label{ii_proof_of_the_weil_conjectures} \hypertarget{26_the_weil_conjecture}{}\subsubsection*{{26. The Weil conjecture}}\label{26_the_weil_conjecture} \begin{itemize}% \item [[Weil conjecture]] \end{itemize} \hypertarget{27_proof_of_the_weil_conjectures_except_for_the_riemann_hypothesis}{}\subsubsection*{{27. Proof of the Weil conjectures, except for the Riemann hypothesis}}\label{27_proof_of_the_weil_conjectures_except_for_the_riemann_hypothesis} \begin{itemize}% \item [[Frobenius endomorphism]] \end{itemize} \hypertarget{28_preliminary_reductions}{}\subsubsection*{{28. Preliminary reductions}}\label{28_preliminary_reductions} \hypertarget{29_the_lefschetz_fixed_point_formula_for_nonconstant_sheaves}{}\subsubsection*{{29. The Lefschetz fixed point formula for non-constant sheaves}}\label{29_the_lefschetz_fixed_point_formula_for_nonconstant_sheaves} \hypertarget{30_the_main_lemma}{}\subsubsection*{{30. The main lemma}}\label{30_the_main_lemma} \hypertarget{31_the_geometry_of_lefschetz_pencils}{}\subsubsection*{{31. The geometry of Lefschetz pencils}}\label{31_the_geometry_of_lefschetz_pencils} \hypertarget{32_the_cohomology_of_lefschetz_pencils}{}\subsubsection*{{32. The cohomology of Lefschetz pencils}}\label{32_the_cohomology_of_lefschetz_pencils} \hypertarget{33_completion_of_the_proof_of_the_weil_conjecture}{}\subsubsection*{{33. Completion of the proof of the Weil conjecture}}\label{33_completion_of_the_proof_of_the_weil_conjecture} \hypertarget{34_the_geometry_of_estimates}{}\subsubsection*{{34. The geometry of estimates}}\label{34_the_geometry_of_estimates} category: reference [[!redirects Lectures on Etale Cohomology]] [[!redirects Étale Cohomology]] [[!redirects Etale Cohomology]] \end{document}