\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Legendre polynomial} The \textbf{Legendre polynomial} $P_l$ (for $l =0,1,2,\ldots$) is the [[polynomial]] in one variable given by the formula \begin{displaymath} P_l(x) = \frac{1}{2^l l!} \frac{d^l}{d x^l}(x^2-1)^l \end{displaymath} Alternatively they can be defined via a generating function: \begin{displaymath} \frac{1}{\sqrt{1-2tx+t^2}} = \sum_{n\geq 0} P_n(x) t^n \end{displaymath} The Legendre polynomials satisfy: \begin{itemize}% \item the following [[differential equation]] of the second order\begin{displaymath} \frac{d}{d x}[(1-x^2)\frac{d P_l}{d x}] + l(l+1) P_l = 0 \end{displaymath} \item the recursion relations\begin{displaymath} (l+1)P_{l+1}-(2l+1)x P_l+l P_{l-1}=0 \end{displaymath} \item the mixed differential recursion relations\begin{displaymath} \array { P'_{l+1}-P'_{l-1} = (2l+1)P_l \\ P'_{l+1}-x P'_l = (l+1)P_l \\ (x^2-1)P_l'-l x P_l+l P_{l-1} = 0 } \end{displaymath} \end{itemize} The Legendre polynomials form a complete system of orthogonal polynomials on the interval $[-1,1]$, that is an unnormalised basis of the [[Hilbert space]] $L^2[-1,1]$. The first few Legendre polynomials are $P_0(x) = 1$, $P_1(x) = x$, $P_2(x)=\frac{1}{2}(3x^2-1)$, $P_3(x)=\frac{1}{2}(5x^2-3)$, $P_4(x)=\frac{1}{8}(35x^4-30x^2+3)$. Their values at $0$ are \begin{displaymath} P_{2n+1}(0)=0,\,\,\,\,\,P_{2n}(0)=(-1)^n\frac{(2n-1)!!}{(2n)!} = \frac{(-1)^n (2n)!}{2^{2n}(n!)^2} \end{displaymath} and $P_l(\pm 1)= (\pm 1)^l$. One also has the integral formulas \begin{displaymath} \array { \int^1_0 P_{2k+1}(x) d x = \frac{(-1)^k (2k)!}{2^{2k+1} k! (k+1)!} \\ \int^1_0 P_{2k}(x) d x = \delta_{k0} \\ \int^1_{-1} x P_l P_k = \left\lbrace \itexarray{ \frac{2(l+1)}{(2l+1)(2l+3)},&k=l+1 \\ \frac{(2l)}{(2l-1)(2l+1)},&k=l-1\\ 0,& otherwise} \right. } \end{displaymath} A generalization of Legendre polynomials are the \textbf{Legendre functions} $P_\nu$ where $\nu$ is not necessarily an integer and $P^m_l$ which are given by \begin{displaymath} P^m_l(x) = \frac{(-1)^m}{2^l l!} (1-x^2)^{m/2} \frac{d^{l+m}}{d x^{l+m}} (x^2-1)^l = (-1)^m (1-x^2)^{m/2} \frac{d^{l}}{d x^{l}} P_l(x) \end{displaymath} for $m\geq 0$ and also \begin{displaymath} P^{-m}_l(x)= (-1)^m\frac{(l-m)!}{(l+m)!} P^m_l(x) \end{displaymath} These $P^m_l$ are satisfying the orthogonality relations \begin{displaymath} \int_{-1}^1 P^m_l(x) P^m_k(x) d x = \frac{2}{2l+1}\frac{(l+m)!}{(l-m)!}\delta_{lk} \end{displaymath} recursion relation \begin{displaymath} x P^m_l(x) = \frac{l+|m|}{2l+1}P^m_{l-1}(x)+\frac{l-|m|+1}{2l+1} P^m_{l+1}(x) \end{displaymath} and the differential equation \begin{displaymath} \frac{d}{d x}[(1-x^2)\frac{d P^m_l}{d x}]+[(l(l+1)-\frac{m^2}{1-x^2}]P^m_l = 0 \end{displaymath} $P_\nu(x)$ is a special case of a [[hypergeometric function]], namely \begin{displaymath} P_\nu(x)={}_2 F_1(-\nu,\nu+1;1;\frac{1-x}{2}) \end{displaymath} Legendre polynomials enter the expressions for the [[spherical function]]s for sphere $S^2$ in 3d: \begin{displaymath} Y_{l m}(\theta,\phi) = \sqrt{ \frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!} } P^m_l(cos\theta) e^{im\phi} \end{displaymath} (If it is not clear from mathML rendering -- both fractions are under square root -- including both the numerators and denominators). If $(\theta,\phi)$ and $(\theta',\phi')$ are two points of the [[unit sphere]] in spherical coordinates (polar angle, azimuth), and $\gamma$ is the angle between the two corresponding rays from the origin then \begin{displaymath} P_l(cos \gamma) = \sum_{m=-l}^l (-1)^m P_l^m(cos \theta)P_l^{-m}(cos \theta') cos(m(\phi-\phi')) = \frac{4\pi}{2l+1}\sum_{m=-l}^l Y_{lm}(\theta,\phi) Y_{lm}^*(\theta',\phi') \end{displaymath} what for $l=1$ reduces to the \textbf{spherical law of cosine} from \href{http://en.wikipedia.org/wiki/Spherical_trigonometry}{spherical trigonometry}: \begin{displaymath} cos \gamma = P_1(cos \gamma) = cos\theta cos\theta' + sin\theta sin\theta' cos(\phi-\phi') \end{displaymath} The orthogonality relation for Legendre polynomials gives Laplace's formula \begin{displaymath} \int_{S^2} d\Omega_{\hat{k}} Y_l(\hat{k}) P_l(\hat{k}\hat{p}) = \frac{4\pi}{2l+1} \delta_{ll'} Y_l(\hat{p}) \end{displaymath} where $\hat{k},\hat{p}$ are unit vectors and $Y_l = \sum a_m Y_{lm}$ is some spherical function. The following orthogonality integral relation is over product of unit spheres in $\mathbb{R}^3$: \begin{displaymath} \int_{\hat{k}}\int_{\hat{p}} d\Omega_{\hat{k}}d\Omega_{\hat{p}} P_l(\hat{k}\hat{p}) P_{l'}(\hat{k}\hat{q}) P_{l''}(\hat{p}\hat{q}) = \left(\frac{4\pi}{2l+1}\right)\delta_{ll'}\delta_{ll''}, \,\,\,\,\,(*) \end{displaymath} where the arguments of Legendre polynomials are the [[inner product]]s of the unit vectors. \emph{Zoran}: the last formula $(*)$ is in my own formula notes which I have written as a student many years ago and used hundreds of times, but it now looks to me suspicious; I have no time to check it right now. [[!redirects Legendre polynomials]] \end{document}