\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Leibniz algebra} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{motivation}{Motivation}\dotfill \pageref*{motivation} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{relation_to_lie_algebras_in_lodaypirashvili_category}{Relation to Lie algebras in Loday-Pirashvili category}\dotfill \pageref*{relation_to_lie_algebras_in_lodaypirashvili_category} \linebreak \noindent\hyperlink{terminology}{Terminology}\dotfill \pageref*{terminology} \linebreak \noindent\hyperlink{corepresentation_representation_crossed_module}{Corepresentation, representation, crossed module}\dotfill \pageref*{corepresentation_representation_crossed_module} \linebreak \noindent\hyperlink{abelian_extensions}{Abelian extensions}\dotfill \pageref*{abelian_extensions} \linebreak \noindent\hyperlink{homology_and_cohomology}{Homology and cohomology}\dotfill \pageref*{homology_and_cohomology} \linebreak \noindent\hyperlink{the_related_kinds_of_algebras}{The related kinds of algebras}\dotfill \pageref*{the_related_kinds_of_algebras} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{motivation}{}\subsection*{{Motivation}}\label{motivation} Sometimes in the place where we expect [[Lie algebra]]s, some noncommutative phenomena occur and we need to drop out the requirement of antisymmetry of the brackets. [[Jean-Louis Loday]] introduced Leibniz algebras, because of considerations in [[algebraic K-theory]]. Roughly speaking the [[Lie algebra homology]] is related to the appearance of cyclic homology (as it is manifest in the original work of Tsygan and then of Loday-Quillen). \begin{itemize}% \item [[Jean-Louis Loday]], [[Daniel Quillen]], \emph{Cyclic homology and the Lie algebra homology of matrices}, Comm. Math. Helv. \textbf{59}, n. 1, 565-591 (1984), \href{http://dx.doi.org/10.1007/BF02566367}{doi} \end{itemize} Lie algebra homology involves the [[Chevalley-Eilenberg chain complex]], which in turns involves the exterior powers of the Lie algebra. Loday found that there is a noncommutative generalization where roughly speaking one has the tensor and not the exterior powers of the Lie algebra in the complex; this new complex defines the \textbf{Leibniz homology} of Lie algebras. The Leibniz homology is related to the [[Hochschild homology]] the same way the Lie algebra homology is related to the cyclic homology. \begin{itemize}% \item C. Cuvier, \emph{Homologie de Leibniz et homologie de Hochschild}, C.R. Acad. Sci. Paris, Ser. A-B313, 569-572 (1991) \end{itemize} In fact this new complex for Leibniz homology further generalizes to the case of Leibniz algebras, where it computes certain [[Tor]] groups for corepresentations of Leibniz algebras. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[commutative unital ring]] $k$ (usually a [[field]]), a Lebniz $k$-algebra $A$ is a particular kind of [[nonassociative algebra]] over $k$ which is somewhat more general than a [[Lie algebra]] over $k$. A \textbf{left Leibniz $k$-algebra} is $k$-[[module]] $L$ equipped with a bracket, which is a $k$-linear map $[,]:A\otimes A \to A$ satisfying the \textbf{left Leibniz identity} \begin{displaymath} [a, [b,c]] = [[a,b],c]+[b,[a,c]] \end{displaymath} In other words, the left $ad$-map, $a \mapsto (ad_l a = [a,-]:L\to L)$ is a [[derivation]] of $L$ as a nonassociative algebra. Similarly, there are right Leibniz algebras, for which the right $ad$-map $ad_r :a\mapsto [-,a]:L\to L$ is a derivation. In the presence of antisymmetry, the left Leibniz identity is equivalent to the [[Jacobi identity]], though this is not true in general; thus a Lie algebra is precisely an antisymmetric (or alternating) Leibniz algebra. \hypertarget{relation_to_lie_algebras_in_lodaypirashvili_category}{}\subsection*{{Relation to Lie algebras in Loday-Pirashvili category}}\label{relation_to_lie_algebras_in_lodaypirashvili_category} There is a remarkable observation of Loday and Pirashvili that in the [[Loday–Pirashvili tensor category]] of linear maps with (exotic) ``infinitesimal tensor product'', the category of internal Lie algebras has the category of, say left, Leibniz $k$-algebras as a full subcategory. \hypertarget{terminology}{}\subsection*{{Terminology}}\label{terminology} Some people dislike the term (left/right) Leibniz algebra (which is allegedly due to Loday), and prefer other names, including `Loday algebras' and many longer descriptive names. \hypertarget{corepresentation_representation_crossed_module}{}\subsection*{{Corepresentation, representation, crossed module}}\label{corepresentation_representation_crossed_module} Both a representation and a corepresentation of a right Leibniz $k$-algebra $\mathfrak{g}$ involve a $k$-module $M$ and two $k$-linear maps ``actions'' $M\otimes\mathfrak{g}\to M$ and $\mathfrak{g}\otimes M\to M$ with 3 axioms. For representations: \begin{displaymath} [m, [x, y]] = [[m, x], y] - [[m, y], x] \end{displaymath} \begin{displaymath} [x, [a, y]] = [[x, m], y] - [[x, y], m] \end{displaymath} \begin{displaymath} [x, [y, m]] = [[x, y], m] - [[x, m], y] \end{displaymath} for $x,y\in\mathfrak{g}$ and for $m\in M$. For corepresentatons: \begin{displaymath} [[x, y], m] = [x, [y, m]] - [y, [x, m]] \end{displaymath} \begin{displaymath} [y, [a, x]] = [[y, m], x] - [m, [x, y]] \end{displaymath} \begin{displaymath} [[m, x], y] = [m, [x, y]] - [[y, m], x]. \end{displaymath} If the two ``actions'' are symmetric, i.e. $[x,m] + [m,x] = 0$ for all $m\in M$, $x\in\mathfrak{g}$ then all the 6 axioms of representation or corepresentation are equivalent. If $M$ is underlying a Leibniz algebra then an action of $\mathfrak{g}$ on $M$ is by definition symmetric, hence all the 6 equivalent conditions hold. A map $t : \mathfrak{g}\to\mathfrak{b}$ together with an action of $\mathfrak{b}$ on $\mathfrak{g}$ is a Leibniz crossed module if \begin{displaymath} t([b,g])= [b,t(g)],\,\,\,t([g,b])=[t(g),b],\,\,\,\, for all\,\,\, b\in\mathfrak{b}, g' \in\mathfrak{g} \end{displaymath} \begin{displaymath} [g, t(g')] = [g, g'] = [t(g), g'],\,\,\,\, for all\,\,\, g, g' \in\mathfrak{g} \end{displaymath} \hypertarget{abelian_extensions}{}\subsection*{{Abelian extensions}}\label{abelian_extensions} Abelian extension of right Leibniz algebras is a split short exact sequence of $k$-modules \begin{displaymath} 0\to M \to \mathfrak{h}\to \mathfrak{g}\to 0 \end{displaymath} where the mapping $\mathfrak{h}\to\mathfrak{g}$ is a morphism of Leibniz algebras, and $M$ is equipped with induced action of $\mathfrak{g}$. The isomorphisms of extensions of $\mathfrak{g}$ by $M$ with fixed action are defined as usual. This way we obtain a set of equivalence classes $Ext(\mathfrak{g},M)$. To classify the extensions one looks for compatible Leibniz brackets on $M\oplus \mathfrak{g}$. The general form of a bracket is \begin{displaymath} [(m_1,x_1),(m_2,x_2)] = ([m_1, x_2] + [x_1, m_2] + f(x_1, x_2), [x_1, x_2]), \end{displaymath} where $f(x_1,x_2)$ satisfy the following 2-cocycle identity: \begin{displaymath} [x, f(y, z)] + [f(x, z), y] - [f(x, y), z] = f([x, y], z) - f([x, z], y) - f(x, [y, z]) \end{displaymath} The extension is \textbf{split} in the category of Leibniz algebras if $f$ is a \emph{boundary} i.e. there exists a $k$-module map $g:\mathfrak{g}\to M$ such that \begin{displaymath} f(x, y) = [x, g(y)] + [g(x), y] - g([x, y]), \,\,\,x,y,\in\mathfrak{g} \end{displaymath} As for the Lie algebras, the group of abelian extensions agrees with the 2-cohomology $HL^2(\mathfrak{g},M)$. A $k$-linear \textbf{derivation} of a right Leibniz algebra $\mathfrak{g}$ with values in its representation $M$ is a $k$-linear map satisfying the Leibniz property with respect to the bracket: \begin{displaymath} \delta([x,y]) = [\delta(x),y]+[x,\delta(y)] \end{displaymath} Such derivations form a $k$-module $Der(\mathfrak{g},M)$. \hypertarget{homology_and_cohomology}{}\subsection*{{Homology and cohomology}}\label{homology_and_cohomology} The homology and cohomology of Leibniz algebra $\mathfrak{g}$ with abelian $k$-module of coefficients, which is a corepresentation $A$ in the case of homology and a representation $M$ in the case of cohomology: \begin{displaymath} HL_*(\mathfrak{g},A) = Tor^{U\mathfrak{g}}_*(U(\mathfrak{g}_{Lie}),A) , \end{displaymath} \begin{displaymath} HL^*(\mathfrak{g},M) = Ext_{U\mathfrak{g}}^*(U(\mathfrak{g}_{Lie}),A) \end{displaymath} where $U(\mathfrak{g}_{Lie})$ is the universal enveloping of the maximal Lie algebra quotient $\mathfrak{g}_{Lie}$ of $\mathfrak{g}$ and $U\mathfrak{g}$ is the universal enveloping of a Leibniz algebra $\mathfrak{g}$. Fopr $n\geq 0$, the $n$-cocycles are elements in $C^n(\mathfrak{g}, M) = Hom_k(\mathfrak{g}^{\otimes n}, M)$, satisfying the corresponding abelian cocycle condition determined by the differential \begin{displaymath} d^n : C^n(\mathfrak{g}, M)\to C^{n+1}(\mathfrak{g}, M) \end{displaymath} \begin{displaymath} (d^n f) (x_1, . . . , x_{n+1}) = [x_1,f(x_2,\ldots,x_{n+1})] +\sum_{n+1}^{i=2} (-1)^i [f(x_1,\ldots, \hat{x}_i, \ldots, x_{n+1}), x_i] \end{displaymath} Notice a difference from the Lie algebra cocycles where instead of a tensor power we have an external power. Then $HL^*(\mathfrak{g},M) = H^*(C^*(\mathfrak{g}, M),d^*)$. There are standard interpretations of cocycles in low dimensions. For example for $n=0$, $HL^0(\mathfrak{g}, M)$ is the submodule of invariants. For $n=1$ there is a natural projection $Der(\mathfrak{g},M)\to HL^1(\mathfrak{g},M)$ whose kernel is generated by inner derivations. \hypertarget{the_related_kinds_of_algebras}{}\subsection*{{The related kinds of algebras}}\label{the_related_kinds_of_algebras} The Leibniz operad is quadratic Koszul algebra whose Koszul dual operad is called the operad of dual Leibniz algebras or of [[Zinbiel algebra]]s, see there. \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} \begin{itemize}% \item [[Jean-Louis Loday]], [[Teimuraz Pirashvili]], \emph{Universal enveloping algebras of Leibniz algebras and (co)homology}, Math. Ann. \textbf{296}, 139-158 (1993), \href{http://www-irma.u-strasbg.fr/~loday/PAPERS/93LodayPira%28Leibniz%29.pdf}{pdf} \item J-L. Loday, \emph{Algebraic K-theory and the conjectural Leibniz K-theory}, K-Theory 09/2003; 30(2):105-127, \href{http://www-irma.u-strasbg.fr/~loday/PAPERS/2003Loday%28LeibnizConj%29.pdf}{pdf} \href{http://dx.doi.org/10.1023/B:KTHE.0000018382.90150.ce}{doi} \item [[Jean-Louis Loday]], [[Teimuraz Pirashvili]], \emph{The tensor category of linear maps}, Georg. Math. J. vol. 5, n.3 (1998) 263--276. \item Jerry M. Lodder, \emph{Leibniz homology, characteristic classes and K-theory, \href{http://www.math.uiuc.edu/K-theory/0493}{K-theory archive/0493};}Leibniz cohomology and the calculus of variations\_, \href{http://arxiv.org/abs/math/9808036}{arXiv:math/9808036} \end{itemize} A generalization of [[Lie integration]] to conjectural Leibniz groups has been conjectured by [[J-L. Loday]]. A local version via local Lie [[rack]]s has been proposed in \begin{itemize}% \item Simon Covez, \emph{The local integration of Leibniz algebras}, \href{http://arxiv.org/abs/1011.4112}{arXiv:1011.4112}; \emph{On the conjectural cohomology for groups}, \href{http://arxiv.org/abs/1202.2269}{arXiv:1202.2269}; \emph{L'int\'e{}gration locale des alg\`e{}bres de Leibniz}, Thesis (2010), \href{http://tel.archives-ouvertes.fr/docs/00/49/54/69/PDF/THESE_Simon_Covez.pdf}{pdf} \end{itemize} This is partly based on earlier insights of Kinyon and Weinstein: \begin{itemize}% \item Michael K. Kinyon, \emph{Leibniz algebras, Lie racks, and digroups}, J. Lie Theory \textbf{17}:1 (2007) 099--114, \href{http://arxiv.org/abs/math/0403509}{arxiv:math.GR/0403509} \item Simon Covez, \emph{On the conjectural Leibniz cohomology for groups}, Journal of K-theory \textbf{10}:03, Dec 2012, pp 519-563 \href{http://dx.doi.org/10.1017/is011011011jkt195}{doi} \end{itemize} [[!redirects Leibniz algebras]] [[!redirects Loday algebra]] [[!redirects Leibniz rule]] [[!redirects Leibniz rules]] [[!redirects Leibniz identity]] [[!redirects Leibniz identities]] \end{document}