\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Levi-Civita connection} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_christoffel_symbols}{In terms of Christoffel symbols}\dotfill \pageref*{in_terms_of_christoffel_symbols} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{in_physics}{In physics}\dotfill \pageref*{in_physics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Levi-Civita connection} is the unique symmetric [[connection on a bundle|connection]] on the [[tangent bundle]] of a [[Riemannian manifold]] or [[pseudo-Riemannian manifold]] that is compatible with the [[Riemannian metric|metric]] or [[pseudo-Riemannian metric|pseudo-metric]]. The [[curvature]] and [[geodesic]]s on a pseudo-Riemannian manifold are taken with respect to this connection. The existence and uniqueness of the Levi-Civita connection is called the \emph{[[fundamental theorem of Riemannian geometry]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{definition_2}{}\paragraph*{{Definition}}\label{definition_2} For $(X,g)$ a [[Riemannian manifold]], the \textbf{Levi-Civita connection} $\nabla_g$ on $X$ is the unique [[connection on a bundle|connection]] on the [[tangent bundle]] $T X$ that \begin{enumerate}% \item the [[covariant derivative]] of the metric vanishes, $\nabla_{g} g = 0$; \item $\nabla_g$ has vanishing [[torsion of a metric connection|torsion]]. \end{enumerate} We say in detail what this means in ``[[first order formulation of gravity|first order formalism]]''/[[Cartan geometry]]. \begin{defn} \label{}\hypertarget{}{} For $(X,g)$ a $(d-k,k)$-[[dimension]]al [[Riemannian manifold]] (for $k = 0$) or [[pseudo-Riemannian manifold]] (for $k = 1$), the \textbf{Levi-Civita connection} $\nabla_g$ on $X$ is the unique $ISO(d-k,k)$-[[connection on a bundle]] $\nabla$ (for $ISO(d-k)$ the [[Poincare group]]) such that \begin{enumerate}% \item \textbf{metric compatibility}: the [[vielbein]] $e$ gives the metric: $g = e \cdot e$; \item \textbf{torsion freeness}: the curvature of the vielbein (the [[torsion]]) vanishes: $T = 0$. \end{enumerate} \end{defn} More in detail, locally on a patch $U_i \subset X$ the $ISO(d-k,k)$-connection $\nabla$ is given by a [[Poincare Lie algebra]]-[[Lie algebra valued 1-form|valued 1-form]] \begin{displaymath} (e, \omega) : T U_i \to \mathfrak{iso}(d-k,k) \simeq \mathbb{R}^d \ltimes \mathfrak{so}(d-k,k) \end{displaymath} with \begin{enumerate}% \item $e_i$ an $\mathbb{R}^d$-valued form -- the [[vielbein]]; \item $\omega_i$ a [[special orthogonal Lie algebra]]-valued form -- the ``[[spin connection]]''. \end{enumerate} The [[curvature]] 2-form of this similarly decomposes into \begin{enumerate}% \item the [[torsion]] $T^a := F_{e}^a = d e^a + \omega^a{}_b \wedge e^b$, (this equation is also called the \textbf{first Cartan structure equation}) \item the [[Riemann curvature]] $R_{g}{}^a{}_b := F_{\omega}^a{}_b = d \omega^a{}_b + \omega^a{}_c \wedge \omega^c{}_d$. (this equation is also called the \textbf{second Cartan structure equation}) \end{enumerate} The [[Bianchi identity]] satisfied by this curvature is \begin{enumerate}% \item $d F_e^a + \omega^a{}_b \wedge F_e^b = F_\omega^a{}_b \wedge e^b$; \item $d F_\omega^a{}_b + \omega^a{}_c \wedge F_\omega^c{}_b - F_\omega^a{}_c \wedge \omega^c{}_b = 0$. \end{enumerate} The metric compatibility condition in the definition of Levi-Civita connection says that \begin{displaymath} g = e^a \otimes e_a \,. \end{displaymath} The torsion-freeness condition says that \begin{displaymath} F_e = 0 \,. \end{displaymath} \hypertarget{in_terms_of_christoffel_symbols}{}\subsection*{{In terms of Christoffel symbols}}\label{in_terms_of_christoffel_symbols} The Levi-Civita connection may be discussed in terms of its components -- called [[Christoffel symbol]]s -- given by the canonical local trivialization of the [[tangent bundle]] over a coordinate patch. This has been the historical route and is still widely used in the literature. \textbf{Metric compatibility} Here a metric $g$ is \textbf{compatible} with the connection $\nabla$ or \emph{preserved} by it (here thought of in its incarnation as a [[covariant derivative]]) if and only if $\nabla_X g = 0$ for all $X$, which is equivalent to the preservation of the metric inner product of tangent vectors under [[parallel transport|parallel translation]]. Since \begin{displaymath} X(g(X_1,X_2)) = (\nabla_X g)(X_1,X_2) + g(\nabla_X X_1, X_2) + g(X_1, \nabla_X X_2) , \end{displaymath} by the fact that covariant differentiation commutes with contractions and satisfies the derviative identity, compatibility is equivalent to \begin{displaymath} X (g (X_1,X_2)) = g(\nabla_X X_1, X_2) + g(X_1, \nabla_X X_2), \end{displaymath} for all $X,X_1, X_2$. \textbf{Uniqueness and existence on $\mathbb{R}^n$} Now assume $M \subset \mathbb{R}^n$ and we have such a connection associated to $g$.\newline Then the connection is uniquely determined by its [[Christoffel symbols]], which we can determine in terms of $g$ by a bit of elementary algebra. In other words, we just need to compute $\nabla_{\partial_i} \partial_j$. Now \begin{displaymath} \partial_k g( \partial_i, \partial_j) = g( \nabla_{\partial_k} \partial_i, \partial_j) + g( \partial_i, \nabla_{\partial_k}\partial_j). \end{displaymath} We can get two other equations by cyclic permutation: \begin{displaymath} \partial_i g( \partial_j, \partial_k) = g( \nabla_{\partial_i} \partial_j, \partial_k) + g( \partial_j, \nabla_{\partial_i}\partial_k) \end{displaymath} \begin{displaymath} \partial_j g( \partial_k, \partial_i) = g( \nabla_{\partial_j} \partial_k, \partial_i) + g( \partial_k, \nabla_{\partial_j}\partial_i) \end{displaymath} So let $S_{i j} := \nabla_{\partial_i} \partial_j = \nabla_{\partial_j} \partial_i$, by symmetry. Let $T_{i j k} := \partial_i g( \partial_j, \partial_k)$; these are smooth real functions. These equations can be written \begin{displaymath} T_{k i j} = g( S_{i k}, \partial_j) + g( S_{j k}, \partial_i) \end{displaymath} \begin{displaymath} T_{i j k} = g( S_{i j}, \partial_k) + g( S_{i k}, \partial_j) \end{displaymath} \begin{displaymath} T_{j k i} = g( S_{j k}, \partial_i) + g( S_{i j}, \partial_k) \end{displaymath} These are three linear equations in the unknowns $g( S_{i k}, \partial_j), g( S_{j k}, \partial_i), g( S_{i j}, \partial_k)$. The system is nonsingular, so we get a unique solution, and consequently by nondegeneracy a unique possibility for the $S_{i j}$. Incidentally, we have in fact shown the uniqueness assertion of the general theorem, since that is local. We shall now prove existence in this restricted case. Choose $S_{i j}$ to satisfy the system of three equations outlined above where $i \lt j \lt k$. Then set $S_{j i} := S_{i j}$, and we have a connection $\nabla$ with $\nabla_{\partial_i} \partial_j := S_{i j}$ since the vector fields $\partial_i$ are a frame (i.e. a basis at each tangent space on $M$). It is symmetric, since the torsion $T$ vanishes (by $S_{i j}=S_{j i}$) on pairs $(\partial_i,\partial_j)$, and hence identically, since it is a tensor. We must check for compatibility. The difference of the two terms in (1) vanishes when $X,X_1,X_2$ are of the form $\partial_i$. The vanishing holds generally because the difference of the two sides, which is $(\nabla_X g)(X_1,X_2)$, is a tensor. Hence compatibility follows. \textbf{Uniqueness and existence in the general case} We have already shown the uniqueness assertion, since that is local. Connections restrict to connections on open subsets. We have proved the existence of $\nabla$ when $M$ is an open submanifold of $\mathbb{R}^n$ (though not necessarily with the canonical metric $\sum_{i=1}^n d x_i \otimes d x_i$). In general, cover $M$ by open subsets $U_i$ diffeomorphic to an open set in $\mathbb{R}^n$. We get connections $\nabla_i$ on $U_i$ compatible with $g|_{U_i}$. We claim that $\nabla_i|_{U_i \cap U_j} = \nabla_j|_{U_i \cap U_j}$. This is an easy corollary of uniquness. So we can patch the connections together to get the one Levi-Civita connection on $M$. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{in_physics}{}\subsubsection*{{In physics}}\label{in_physics} In the [[physics]], the theory of [[general relativity]] models the field of [[gravity]] in terms of the Levi-Civita connection on a [[Lorentzian manifold]]. See there for more details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Weitzenböck connection]] \item [[connection on a bundle]] \begin{itemize}% \item [[parallel transport]], [[holonomy]] \end{itemize} \item [[principal connection]] \begin{itemize}% \item [[affine connection]], \textbf{Levi-Civita connection}, [[Cartan connection]] \end{itemize} \item [[connection on a 2-bundle]] \item [[connection on an infinity-bundle]] \begin{itemize}% \item [[higher parallel transport]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A discussion in terms of [[synthetic differential geometry]] is in \begin{itemize}% \item [[Gonzalo Reyes]], \emph{General Relativity:} \emph{Metrics, connections and curvature} (\href{http://po-start.com/reyes/wp-content/uploads/2007/01/metrics.pdf}{pdf}) \emph{The Riemann-Christoffel tensor} (\href{http://po-start.com/reyes/wp-content/uploads/2007/01/the-riemann-christoffel-tensor.pdf}{pdf}) \emph{Affine connections, parallel transport and sprays} (\href{http://po-start.com/reyes/wp-content/uploads/2009/01/affineconnections.pdf}{pdf}) \end{itemize} [[!redirects Levi-Civita connections]] [[!redirects metric connecitons]] \end{document}