\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lie 2-group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{constructions_and_applications}{Constructions and Applications}\dotfill \pageref*{constructions_and_applications} \linebreak \noindent\hyperlink{DeloopingLie2Groupoid}{Delooping 2-groupoids}\dotfill \pageref*{DeloopingLie2Groupoid} \linebreak \noindent\hyperlink{principal_2bundles}{Principal 2-bundles}\dotfill \pageref*{principal_2bundles} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Lie 2-group} is the generalization of the notion of [[Lie group]] as [[group]]s are generalized to [[2-groups]]: it is a [[smooth 2-group]] that happens to have a model given by a [[Lie groupoid]] equipped with the structure of a [[group object]] (in general only up to [[homotopy]]). One general way to make the notion precise is as a special case of an [[smooth ∞-groupoid]], namely a [[1-truncated]] [[∞-group]] object in [[∞-stack]]s over the [[site]] [[CartSp]]/[[SmthMfd]], possibly with some representability condition: these are [[stack]]s on the [[site]] of [[smooth manifold]]s (representable by [[Lie groupoid]]s and) equipped with group structure: ``group stacks'' or ``gr-stacks''. Special cases of this have simpler definitions. For instance a [[crossed module]] [[internal category|internal]] to [[Diff]] is a model for a strict and comparatively tame Lie 2-group. Analogous to how the [[infinitesimal object|infinitesimal]] version of a [[Lie group]] is a [[Lie algebra]], the infinitesimal version of a Lie 2-group is a [[Lie 2-algebra]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Every ordinary [[Lie group]] $G$ is in particular a Lie 2-group with $G$ as its space of [[object]]s and only [[identity morphism]]s. \item Every [[discrete infinity-groupoid|discrete]] [[2-group]] is a Lie 2-group equipped with [[discrete space|discrete smooth structure]]; \item For $A$ an [[abelian group|abelian]] [[Lie group]] there is a Lie 2-group denoted $\mathbf{B}A$ or $(A \to 1)$, which has a single [[object]] and $A$ as its space of [[morphism]]. For $A = U(1)$ the [[circle group]], the Lie 2-group $\mathbf{B}U(1)$ is the \emph{[[circle n-group|circle 2-group]]} . \item Every [[crossed module]] of Lie groups $(H \to G )$, $G \to Aut(H)$ gives an example of a [[strict 2-group|strict]] Lie 2-group, using the general relation between crossed modules and [[strict 2-group]]s. For instance the crossed module $Spin(n) \to O(n)$. Or $(U(1) \to 1)$. Etc. \item The [[string 2-group]] $String(G)$ has various different but equivalent incarnations as a Lie 2-group. One is given by the [[crossed module]] $\hat \Omega_* G \to P_* G$ internal to [[Frechet manifold|Frechet]] Lie groups. \item For $X$ a [[Lie groupoid]], its [[automorphism infinity-group]] is a smooth 2-group. \end{itemize} \hypertarget{constructions_and_applications}{}\subsection*{{Constructions and Applications}}\label{constructions_and_applications} \hypertarget{DeloopingLie2Groupoid}{}\subsubsection*{{Delooping 2-groupoids}}\label{DeloopingLie2Groupoid} By the discussion at [[looping and delooping]], every Lie 2-group $G$ induces a [[delooping]] [[Lie 2-groupoid]] $\mathbf{B}G$: this has a single [[object]], the space of [[morphism]]s is $G_0$, the space of [[2-morphism]]s is $G_1$ and the [[horizontal composition]] is given by the group product. \hypertarget{principal_2bundles}{}\subsubsection*{{Principal 2-bundles}}\label{principal_2bundles} For $X$ a [[smooth manifold]] (or itself a [[Lie groupoid]] such as an [[orbifold]], or generally any [[smooth ∞-groupoid]]), morphisms \begin{displaymath} g : X \to \mathbf{B}G \end{displaymath} of [[smooth ∞-groupoid]]s from $X$ to the \hyperlink{DeloopingLie2Groupoid}{delooping Lie 2-groupoid} $\mathbf{B}G$ classify smooth $G$-[[principal 2-bundle]]s over $X$. If $G = AUT(H)$ is the [[automorphism 2-group]] of a [[Lie group]] $H$ then these are equivalently smooth $H$-[[gerbe]]s over $X$. Notice that a morphism of smooth $\infty$-groupoids $X \to \mathbf{B}G$ is presented by an [[infinity-anafunctor|2-anafunctor]] of 2-groupoid valued presheaves, given by a [[span]] \begin{displaymath} \itexarray{ C(U_i) &\stackrel{g}{\to}& \mathbf{B}G \\ \downarrow^{\simeq} \\ X } \,, \end{displaymath} where $C(U_i)$ is the [[Cech nerve]] 2-groupoid of some [[covering]]. The top morphism here encodes degree-1 [[nonabelian cohomology|nonabelian]] [[Cech cohomology|Cech]] [[hypercohomology]] with coefficients in $G$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group]], [[Lie group]], [[Lie groupoid]] \item [[2-group]], \textbf{Lie 2-group}, [[Lie 2-groupoid]] \begin{itemize}% \item [[Poisson Lie 2-group]] \end{itemize} \item [[∞-group]], [[smooth ∞-group]], [[smooth ∞-groupoid]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} An first exposition is in the lecture notes \begin{itemize}% \item Alissa Crans, \emph{A survey of higher Lie theory} (\href{http://myweb.lmu.edu/acrans/SurveyHigherLieTheory.pdf}{pdf}) \end{itemize} A general review of Lie 2-groups, as well as a discussion of the example of the [[string 2-group]] is in \begin{itemize}% \item [[John Baez]], Alissa Crans, [[Urs Schreiber]], [[Danny Stevenson]], \emph{From Loop Groups to 2-Groups} (\href{http://arxiv.org/abs/math/0504123}{arXiv:math/0504123}) \end{itemize} Discussion in a more comprehensive context is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} with an introduction in section 1.3.1 and a general abstract discussion in 3.3.2. On the [[cohomology]] of Lie 2-groups: \begin{itemize}% \item [[Grégory Ginot]], [[Ping Xu]], \emph{Cohomology of Lie 2-groups} (\href{http://people.math.jussieu.fr/~ginot/papers/CohLie2gp.pdf}{pdf}) \item [[Christoph Wockel]], \emph{Categorified central extensions, \'e{}tale Lie 2-groups and Lies Third Theorem for locally exponential Lie algebras} (\href{http://www.sciencedirect.com/science/article/pii/S0001870811002313}{web}) \item [[Chris Schommer-Pries]], \emph{Central Extensions of Smooth 2-Groups and a Finite-Dimensional String 2-Group} (\href{http://arxiv.org/abs/0911.2483}{arXiv}) \end{itemize} [[!redirects Lie 2-groups]] \end{document}