\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lie algebra extension} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classification_by_nonabelian_lie_algebra_cohomology}{Classification by nonabelian Lie algebra cohomology}\dotfill \pageref*{classification_by_nonabelian_lie_algebra_cohomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} An \emph{extension} of a [[Lie algebra]] $\mathfrak{g}$ is another Lie algebra $\hat {\mathfrak{g}}$ that is equipped with a surjective Lie algebra homomorphism to $\mathfrak{g}$ \begin{displaymath} \itexarray{ \hat{\mathfrak{g}} \\ \downarrow \\ \mathfrak{g} } \,. \end{displaymath} For non-tivial extensions, this homomorphism has a [[kernel]] $\mathfrak{a} \hookrightarrow \hat \mathfrak{g}$ , consisting of those elements of $\hat{\mathfrak{g}}$ that map to the zero element in $\mathfrak{g}$. That kernel is a sub-Lie algebra of $\hat{\mathfrak{g}}$ and hence one says that $\hat\mathfrak{g}$ is an extension of $\mathfrak{g}$ by $\mathfrak{a}$. \begin{displaymath} \itexarray{ \mathfrak{a} &\hookrightarrow& \hat{\mathfrak{g}} \\ &&\downarrow \\ && \mathfrak{g} } \,. \end{displaymath} This means equivalently that there is a [[short exact sequence]] of Lie algebras of the form \begin{displaymath} 0 \to \mathfrak{a} \longrightarrow \hat \mathfrak{g} \longrightarrow \mathfrak{g} \to 0 \,. \end{displaymath} When $\mathfrak{a}$ happens to be abelian, hence when its Lie bracket is trivial, then one speaks of an abelian extension, and when furthermore the Lie bracket of $\hat\mathfrak{g}$ vanishes as soon as already one of its arguments is in $\mathfrak{a}$, then one has a [[central extension]] ($\mathfrak{a}$ is in the [[center]] of $\hat \mathfrak{g}$). Central extensions by the [[ground field]] (say $\mathbb{R}$) are equivalently induced by a 2-cocyle $\mu_2$ in the [[Lie algebra cohomology]] of $\mathfrak{g}$ with [[coefficients]] in the [[ground field]], say $\mathbb{R}$, i.e. by linear maps \begin{displaymath} \mu_2 \colon \mathfrak{g} \wedge \mathfrak{g} \longrightarrow \mathbb{R} \end{displaymath} satisfying some conditions. The corresponding extension of $\mathfrak{g}$ is then, at the level of underlying vector space, the [[direct sum]] $\hat \mathfrak{g} = \mathfrak{g} \oplus \mathbb{R}$, equipped with the Lie bracket given by the formula \begin{displaymath} [(x_1,t_1), (x_2,t_2)] = ([x_1,x_2], \mu_2(x_1,x_2)) \end{displaymath} for all $x_1,x_2 \in \mathfrak{g}$ and $t_1,t_2 \in \mathbb{R}$. The condition on $\mu_2$ to be a 2-cocycle is precisely the condition that this formula satisfies the [[Jacobi identity]]. If one regards all Lie algebras here as being special cases of [[Lie 2-algebras]], then the 2-cocycle $\mu_2$ may itself be thought of as a homomorphism, namely from $\mathfrak{g}$ to the [[line Lie 2-algebra]] $b\mathbb{R}$. With this, then $\hat \mathfrak{g}$ given by the above formula is simply the [[homotopy fiber]] of $\mu_2$, and the whole story comes down to saying that there is a [[homotopy fiber sequence]] of [[L-∞ algebras]] of the form \begin{displaymath} \itexarray{ \mathbb{R} &\hookrightarrow& \hat{\mathfrak{g}} \\ &&\downarrow \\ && \mathfrak{g} &\stackrel{\mu_2}{\longrightarrow}& b \mathbb{R} } \,. \end{displaymath} This perspective on Lie algebra extensions makes it evident how the concept generalizes to a concept of \href{infinity-Lie+algebra+cohomology#Extensions}{L-∞ algebra extensions}. Of course extensions need not be central or even abelian. An important class of non-abelian extensions are [[semidirect product Lie algebras]]. These are given by an Lie [[action]] of $\mathfrak{g}$ on $\mathfrak{a}$, hence a [[homomorphism]] $\rho \colon \mathfrak{g}\longrightarrow \mathfrak{der}(\mathfrak{a})$ to the [[derivations]] on $\mathfrak{a}$ and with this the bracket on $\mathfrak{g} \oplus \mathfrak{a}$ is given by the formula \begin{displaymath} [(x_1,t_1), (x_2,t_2)] = ( [x_1,x_2], \;([t_1,t_2] + \rho(x_1)(t_2) - \rho(x_2)(t_1)) ) \,. \end{displaymath} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[short exact sequence]] of [[Lie algebras]] is a [[diagram]] \begin{displaymath} 0\to \mathfrak{k} \overset{i}\to \mathfrak{g}\overset{p}\to\mathfrak{b}\to 0 \end{displaymath} where $\mathfrak{k},\mathfrak{g},\mathfrak{b}$ are Lie algebras, $i,p$ are homomorphisms of Lie algebras and the underlying diagram of vector spaces is exact, i.e. $Ker(p)=Im(i)$, $Ker(i)=0$ and $Im(p)=0$. We also say that this diagram (and sometimes, loosely speaking, $\mathfrak{g}$ itself) is a \textbf{Lie algebra extension} of $\mathfrak{b}$ by the ``kernel'' $\mathfrak{k}$. Lie algebra extensions may be obtained from [[Lie group]] [[group extensions]] via the tangent Lie algebra functor. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{classification_by_nonabelian_lie_algebra_cohomology}{}\subsubsection*{{Classification by nonabelian Lie algebra cohomology}}\label{classification_by_nonabelian_lie_algebra_cohomology} We discuss how in general Lie algebra extensions are classified by cocycles in [[nonabelian Lie algebra cohomology]]. Each element $g \in \mathfrak{g}$ defines a derivative $\phi(g)$ on $\mathfrak{k}$ by $\phi(g)(k) = [g,k]$. The rule $g \mapsto \phi(g)$ defines a homomorphism of Lie algebras $\phi : \mathfrak{g} \rightarrow Der(\mathfrak{k})$. Indeed, \begin{displaymath} \phi([g_1,g_2])(k) = [[g_1,g_2],k] = [[g_1,k],g_2] + [g_1,[g_2,k]] = -\phi(g_2)([g_1,k]) + \phi(g_1)([g_2,k]) = [-\phi(g_2)\circ\phi(g_1) + \phi(g_1)\circ\phi(g_2)](k) = [\phi(g_1),\phi(g_2)](k), \end{displaymath} for all $g_1,g_2 \in \mathfrak{g}$, for all $k \in \mathfrak{k}$. The restriction $\phi|_{\mathfrak{k}}$ takes (by definition) values in the Lie subalgebra $Int(\mathfrak{k})$ of inner derivatives of $\mathfrak{k}$. If $g_1$ and $g_2$ are in the same coset, that is $g_1 + \mathfrak{k} = g_2 + {\frak k}$, then there is $k \in \mathfrak{k}$ with $g_1 + k = g_2$ and such that for all $k' \in \mathfrak{k}$ we have $\phi(g_1) + \phi(k) = \phi(g_1 + k') = \phi(g_2 + k + k') = \phi(g_2)+\phi(k + k')$ and therefore \begin{displaymath} \itexarray{\phi(g_1) + Int(\mathfrak{k}) &=& \phi(g_1) + \phi(\mathfrak{k})\\ &=& \phi(g_1 + \mathfrak{k}) \\ &=& \phi(g_2 + \mathfrak{k}) \\ &=& \phi(g_2) + \phi(\mathfrak{k})\\ &=& \phi(g_2) + Int(\mathfrak{k}).} \end{displaymath} Thus we obtain a well-defined map $\phi_* : \mathfrak{g}/\mathfrak{k} \to Der(\mathfrak{k})/Int(\mathfrak{k})$. Choose a $k$-linear section of the projection $\mathfrak{g} \rightarrow \mathfrak{g}/\mathfrak{k}\cong \mathfrak{b}$ and denote by $\psi$ the composition $\phi \circ \sigma$ where $\sigma : \mathfrak{g}/\mathfrak{k} = \mathfrak{b} \rightarrow \mathfrak{g}$. One considers the problem of reconstructing the group $\frak g$ from the knowledge of $\psi : \mathfrak{g}/\mathfrak{k} \rightarrow Der(\mathfrak{k})$ and $\mathfrak{k}$. In order to derive the necessary relations we will identify $\mathfrak{g}$ with $\mathfrak{b} \times \mathfrak{k}$ (as a set). Indeed, write each element $g \in G$ as $\sigma(b) + k, b \in \mathfrak{g}/\mathfrak{k}$, $k \in \mathfrak{k}$ by setting $b := [g], k := -\sigma([g]) + g$. Elements $b \in \mathfrak{b}$ and $k \in \mathfrak{k}$ in that decomposition are unique. Thus we obtain a bijection $\mathfrak{g} \rightarrow \mathfrak{b} \times \mathfrak{k}$, $g \mapsto ([g], -\sigma([g]) + g )$. The commutation rule has to be figured out. If $(b_1,k_1) = g_1$, and $(b_2,k_2) = g_2$, then \begin{equation} [g_1,g_2] = [\sigma(b_1) + k_1,\sigma(b_2) + k_2] = [\sigma(b_1),\sigma(b_2)] + [\sigma(b_1),k_2] - [\sigma(b_2),k_1] +[k_1,k_2]. \label{putkhilie}\end{equation} Now $[\sigma(b_1),\sigma(b_2)] \in [b_1b_2]$ so it can be represented uniquely in the form $\sigma([b_1,b_2]) + k$ where $k \in \mathfrak{k}$ can be obtained by evaluating the antisymmetric $k$-bilinear form $\chi : \mathfrak{b} \wedge \mathfrak{b} \rightarrow \mathfrak{k}$ defined by $\chi(b_1 \wedge b_2) = - \sigma([b_1,b_2]) + [\sigma(b_1),\sigma(b_2)]$ on $(b_1,b_2)$. Then formula \eqref{putkhilie} becomes \begin{displaymath} \itexarray{ [g_1,g_2] & = & \sigma([b_1,b_2]) + \chi(b_1\wedge b_2) + \phi(\sigma(b_1))(k_2) + \phi(-\sigma(b_2))(k_1) + [k_1,k_2] \\ & = & \sigma([b_1,b_2]) + \chi(b_1\wedge b_2) + \psi(b_1)(k_2) -\psi(b_2)(k_1) + [k_1,k_2]. } \end{displaymath} so that \begin{equation} (b_1,k_1)(b_2,k_2) = ([b_1,b_2],\chi(b_1\wedge b_2) + \psi(b_1)(k_2) - \psi(b_2)(k_1) + [k_1,k_2]). \label{mrulelie}\end{equation} Thus all the information about the commutators is encoded in functions $\chi : \mathfrak{n} \wedge \mathfrak{b} \rightarrow Der(\mathfrak{k})$ and $\psi : \mathfrak{b} \to Der(\mathfrak{k})$, without knowledge of $\sigma$. However, not every pair $(\chi,\psi)$ will give some commutation rule on $\mathfrak{b} \times k$ satisfying Jacobi identity, and also some different pairs may lead to the isomorphic extensions. In order to satisfy the Jacobi identity, this pair needs to form a nonabelian 2-cocycle in the sense of [[nonabelian Lie algebra cohomology]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[Heisenberg Lie algebra]] is an extension of $\mathbb{R}^{2}$, regarded as an abelian Lie algebra, by $\mathbb{R}$ with the corresponding 2-cocycle $\mu_2$ being the canonical commutation relation $\mu_2(q,q)= 0$, $\mu_2(p,p)= 0$, $\mu_2(q,p) = 1$. \item More generally, the [[Kostant Souriau extension]] exhibits a [[Poisson bracket]] on a [[symplectic manifold]] as an extension of the Lie algebra of [[Hamiltonian vector fields]]. \end{itemize} For more discussion putting these two examples in perspective see also at \emph{\href{quantization#MotivationFromClassicalMechanicsAndLieTheory}{quantization -- Motivation from classical mechanics and Lie theory}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[central extension]], [[central charge]] \item [[Lie algebra contraction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in the generality of [[super Lie algebras]] includes \begin{itemize}% \item [[Dmitri Alekseevsky]], [[Peter Michor]], Wolfgang Ruppert, \emph{Extensions of super Lie algebras}, J. Lie Theory 15 (2005) No. 1, 125--134 (\href{http://arxiv.org/abs/math/0101190}{arXiv:math/0101190}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Lie_algebra_extension}{Lie algebra extension}} \end{itemize} [[!redirects Lie algebra extensions]] [[!redirects extension of Lie algebras]] [[!redirects extensions of Lie algebras]] [[!redirects prolongation]] [[!redirects prolongations]] \end{document}