\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lie algebroid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_vector_bundles_with_anchor}{In terms of vector bundles with anchor}\dotfill \pageref*{in_terms_of_vector_bundles_with_anchor} \linebreak \noindent\hyperlink{the_cealgebra_of_a_vector_bundle_with_anchor}{The CE-algebra of a vector bundle with anchor}\dotfill \pageref*{the_cealgebra_of_a_vector_bundle_with_anchor} \linebreak \noindent\hyperlink{semifree_dgalgebras}{Semi-free dg-algebras}\dotfill \pageref*{semifree_dgalgebras} \linebreak \noindent\hyperlink{lierinehart_algebras}{Lie-Rinehart algebras}\dotfill \pageref*{lierinehart_algebras} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{lie_theory_2}{Lie theory}\dotfill \pageref*{lie_theory_2} \linebreak \noindent\hyperlink{poisson_geometry}{Poisson geometry}\dotfill \pageref*{poisson_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \emph{Lie algebroid} is the [[horizontal categorification|many object version]] of a [[Lie algebra]]. It is the [[infinitesimal space|infinitesimal]] approximation to a [[Lie groupoid]]. There are various equivalent definitions: \hypertarget{in_terms_of_vector_bundles_with_anchor}{}\subsubsection*{{In terms of vector bundles with anchor}}\label{in_terms_of_vector_bundles_with_anchor} \begin{defn} \label{}\hypertarget{}{} A Lie algebroid over a [[manifold]] $X$ is \begin{itemize}% \item a [[vector bundle]] $E \to X$; \item equipped with a Lie brackets $[\cdot,\cdot] : \Gamma(E)\otimes \Gamma(E) \to \Gamma(E)$ (over the ground field) on its space of sections; \item a morphisms of vector bundles $\rho : E \to TX$, whose tangent map preserves the bracket: $(d\rho)([\xi,\zeta]_{\Gamma E}) = [d\rho(\xi),d\rho(\zeta)]_{\Gamma TX}$; (but this property of preserving brackets is implied by the next property, see Y. Kosmann-Schwarzbach and F. Magri. Poisson-Nijenhuis structures. Ann. Inst. H. Poinar\'e{} Phys. Th\'e{}or., 53(1):3581, 1990.) \item such that the \emph{Leibniz rule} holds: for all $X, Y \in \Gamma(E)$ and all $f \in C^\infty(X)$ we have \begin{displaymath} [X, f \cdot Y] = f\cdot [X,Y] + \rho(X)(f) \cdot Y \,. \end{displaymath} \end{itemize} \end{defn} \hypertarget{the_cealgebra_of_a_vector_bundle_with_anchor}{}\subsubsection*{{The CE-algebra of a vector bundle with anchor}}\label{the_cealgebra_of_a_vector_bundle_with_anchor} Given this data of a vector bundle $E \to X$ with anchor map $\rho$ as above, one obtains the structure of a [[dg-algebra]] on the [[exterior algebra]] $\wedge^\bullet_{C^\infty(X)} \Gamma(E)^*$ of smooth sections of the dual bundle by the formula \begin{displaymath} (d\omega)(e_0, \cdots, e_n) = \sum_{\sigma \in Shuff(1,n)} sgn(\sigma) \rho(e_{\sigma(0)})(\omega(e_{\sigma(1)}, \cdots, e_{\sigma(n)})) + \sum_{\sigma \in Shuff(2,n-1)} sign(\sigma) \omega([e_{\sigma(0)},e_{\sigma(1)}],e_{\sigma(2)}, \cdots, e_{\sigma(n)} ) \,, \end{displaymath} for all $\omega \in \wedge^n_{C^\infty(X)} \Gamma(E)^*$ and $(e_i \in \Gamma(E))$, where $Shuff(p,q)$ denotes the set of $(p,q)$-[[shuffle]]s $\sigma$ and $sgn(\sigma)$ the [[signature]] $\in \{\pm 1\}$ of the corresponding [[permutation]]. More details on this are at [[Chevalley-Eilenberg algebra]]. Conversely, one finds that every [[semi-free dga]] finitely generated in degree 1 over $C^\infty(X)$ arises this way, so that one may turn this around: \hypertarget{semifree_dgalgebras}{}\subsubsection*{{Semi-free dg-algebras}}\label{semifree_dgalgebras} \begin{defn} \label{}\hypertarget{}{} A Lie algebroid over a manifold $X$ is a vector bundle $E \to X$ equipped with a degree +1 derivation $d$ on the free (over $C^\infty(X)$) graded-commutative algebra $\wedge^\bullet_{C^\infty(X)} \Gamma(E)^*$ (where the dual is over $C^\infty$), such that $d^2 = 0$. \end{defn} This is for $\Gamma(E)$ satisfying suitable finiteness conditions. In general, as the masters well knew, the correct definition is the algebra of alternating multilinear functions from $\Gamma(E)$ to the ground field, assumed of characteristic 0. This can also be phrased in terms of linear maps from the corresponding coalgebra cogenerated by $\Gamma(E)$, but the masters did not have coalgebras in those days. The differential graded-commutative algebra \begin{displaymath} CE(\mathfrak{g}) := (\wedge^\bullet_{C^\infty(X)} \Gamma(E)^*, d) \end{displaymath} is the [[Chevalley-Eilenberg algebra]] of the Lie algebroid (in that for $X = pt$ it reduces to the ordinary Chevally--Eilenberg algebra for Lie algebras). In the existing literature this is often addressed just as ``the complex that computes Lie algebroid cohomology''. It is helpful to compare this definition to the general definition of [[Lie infinity-algebroid|Lie ∞-algebroids]], the [[vertical categorification]] of Lie algebras and Lie algebroids. \hypertarget{lierinehart_algebras}{}\subsubsection*{{Lie-Rinehart algebras}}\label{lierinehart_algebras} \begin{defn} \label{}\hypertarget{}{} A Lie algebroid over the manifold $X$ is \begin{itemize}% \item a Lie algebra $\mathfrak{g}$; \item the structure of a Lie module over $\mathfrak{g}$ on $C^\infty(X)$ (i.e. an action of $\mathfrak{g}$ on $X$); \item the structure of a $C^\infty(X)$-module on $\mathfrak{g}$ (in fact: such that $\mathfrak{g}$ is a finitely generated projective module); \item such that the two actions satisfy two compatibility conditions which are modeled on the standard relations obtained by setting $\mathfrak{g} = \Gamma(T X)$. \end{itemize} \end{defn} This is the special case of a [[Lie-Rinehart pair]] $(A,\mathfrak{g})$ where the associative algebra $A$ is of the form $C^\infty(X)$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A \textbf{[[Lie algebra]]} is a Lie algebroid over a point, $X = pt$. \item The \textbf{[[tangent Lie algebroid]]} is \begin{enumerate}% \item in the vector bundle definition given by $E = T X$, $\rho = \mathrm{Id}$; \item in the [[Chevalley-Eilenberg algebra]] definition: $\mathrm{CE}(T X) = (\Omega^\bullet(X), d_{deRham})$; \end{enumerate} \item An [[action Lie algebroid]] is the Lie version of an [[action groupoid]]. \item \textbf{Bundles of Lie algebras} $E \to X$ with fiber $\mathfrak{g}$ are Lie algebroids with $\rho = 0$ and fiberwise bracket. In particular, for $G$ a Lie group with Lie algebra $\mathfrak{g}$ and $P \to X$ a $G$-principal bundle, the \emph{adjoint bundle} $ad P := P \times_G \mathfrak{g}$ (where $\mathfrak{g}$ is associated using the [[adjoint representation]] of $G$ on its Lie algebra) is a bundle of Lie algebras. \item Lie algebroids with injective anchor maps are equivalently [[integrable distributions]] in the [[tangent bundle]] of their base manifold and hence are equivalently [[foliations]] of their base manifold. \item The \textbf{[[Atiyah Lie algebroid]]} is the Lie algebroid of the [[Atiyah Lie groupoid]] of a principal bundle: for $G$ a Lie group and $P \to X$ a $G$-principal bundle, the vector bundle $At(P):= T P/G$ naturally inherits the structure of a Lie algebroid. Moreover, it fits into a short exact sequence of Lie algebroids over $X$ \begin{displaymath} 0 \to ad P \to At(P) \to T X \to 0 \end{displaymath} known as the \textbf{Atiyah sequence}. \item The \textbf{vertical tangent Lie algebroid} $T_{vert}Y \hookrightarrow T Y$ of a smooth map $\pi : Y \to X$ of manifolds is the sub-Lie algebroid of the tangent Lie algebroid $T Y$ defined as follows: \begin{enumerate}% \item In the vector bundle perspective $E = ker(\pi_*)$ is the kernel bundle of the map $\pi_* : T Y \to T X$. \item In the dual picture we have $CE(T_{vert}Y) = \Omega^\bullet_{vert}(Y)$, the [[Lie infinity-algebroid|qDGCA]] of \textbf{vertical differential forms}. This is the quotient of $\Omega^\bullet(Y)$ by the ideal of those forms which vanish when restricted in all arguments to $ker(\pi_*)$. \end{enumerate} \item Each [[Poisson manifold]] $(X,\pi)$ defines and is defined by a [[Poisson Lie algebroid]] $T^* X \stackrel{\pi}{\to} t X$. This is the degree-1 example of a more general structure described at [[n-symplectic manifold]]. \item If $E\to X$ is a Lie algebroid with bracket $[,]$ and anchor $\rho:E\to TX$ then it induces a Lie algebroid structure on the $k$-th [[jet bundle|jet]] bundle $j^k E\to X$, called the \textbf{jet Lie algebroid}. More precisely, if $s\in\Gamma_X E$ then call by $j^k s$ the induced section in $\Gamma_X j^k E$. Then there is a unique Lie algebroid structure on the bundle $j^k E\to X$ such that the following two properties hold: $[j^k s, j^k t] = j^k [s,t]$ and $\rho(j^k s) = \rho(s)$ for all $s,t\in\Gamma_X E$ (see \href{http://www.math.ist.utl.pt/~rfern/Meus-papers/HTML/jets.pdf}{pdf}). \item A [[BRST complex]] is a [[Chevalley-Eilenberg algebra]] of a Lie algebroid which corresponds to the [[action groupoid]] of a Lie group acting on a space. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{lie_theory_2}{}\subsubsection*{{Lie theory}}\label{lie_theory_2} The extent to which Lie algebroids are to [[Lie groupoid|Lie groupoids]] as Lie algebras are to Lie groups is the content of general [[Lie theory]], in which [[Lie's three theorems|Lie's theorems]] have been generalized to Lie algebroids. \hypertarget{poisson_geometry}{}\subsubsection*{{Poisson geometry}}\label{poisson_geometry} The fiberwiese linear dual of a Lie algebroid (regarded as a vector bundle) is naturally a [[Poisson manifold]]: the \emph{[[Lie-Poisson structure]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Lie algebra]], \textbf{Lie algebroid} \item [[double Lie algebroid]] \item [[L-∞ algebra]], [[L-∞ algebroid]] \item [[foliation of a Lie algebroid]] \item [[Lie algebroid cohomology]] \item [[super Lie algebroid]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept of Lie algebroid was introduced in \begin{itemize}% \item [[Jean Pradines]], \emph{Th\'e{}orie de Lie pour les groupo\"i{}des diff\'e{}rentiables. Calcul diff\'e{}renetiel dans la cat\'e{}gorie des groupo\"i{}des infinit\'e{}simaux}, C. R. Acad. Sci. Paris S\'e{}r. A-B 264 1967 A245--A248, \href{http://www.ams.org/mathscinet-getitem?mr=0216409}{MR0216409} \end{itemize} In algebra a generalization of Lie algebroid, the Lie pseduoalgebra or Lie-Rinehart algebra/pair has been introduced more than a dozen of times under various names starting in early 1950-s. Atiyah's construction of Atiyah sequence is published in 1957 and Rinehart's paper in 1963. Historically important is also the reference \begin{itemize}% \item [[Theodore Courant]], \emph{Tangent Lie algebroid} (\href{http://www.iop.org/EJ/article/0305-4470/27/13/026/ja941326.pdf}{pdf}) \end{itemize} on [[tangent Lie algebroid]]s. Contemporary textbooks include: \begin{itemize}% \item K. C. H. Mackenzie, \emph{General theory of Lie groupoids and Lie algebroids,} Cambridge University Press, 2005, xxxviii + 501 pages (\href{http://kchmackenzie.staff.shef.ac.uk/gt.html}{website}) \item K. C. H. Mackenzie, \emph{Lie groupoids and Lie algebroids in differential geometry}, London Mathematical Society Lecture Note Series, 124. Cambridge University Press, Cambridge, 1987. xvi+327 pp (\href{http://www.ams.org/mathscinet-getitem?mr=896907}{MathSciNet}) \item [[Janez Mrčun]], [[Ieke Moerdijk]], \emph{Introduction to foliations and Lie groupoids}, Cambridge Studies in Advanced Mathematics \textbf{91}, Cambridge University Press 2003. x+173 pp. ISBN: 0-521-83197-0 \end{itemize} For an infinite-dimensional version used in stochastic analysis see \begin{itemize}% \item R\'e{}mi L\'e{}andre, \emph{A Lie algebroid on the Wiener space}, Adv. Math. Phys. 2010, Art. ID 146719, 17 pp. \href{http://www.ams.org/mathscinet-getitem?mr=2594930}{MR2011j:58064} \end{itemize} There is also a recent ``hom-version'' \begin{itemize}% \item Camille Laurent-Gengoux, Joana Teles, \emph{Hom-Lie algebroids}, \href{http://arxiv.org/abs/1211.2263}{arxiv/1211.2263} \end{itemize} [[!redirects Lie algebroids]] [[!redirects anchor map]] [[!redirects anchor maps]] \end{document}