\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lie differentiation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ForDeformationContexts}{For deformation contexts}\dotfill \pageref*{ForDeformationContexts} \linebreak \noindent\hyperlink{ForCohesiveContexts}{For cohesive contexts}\dotfill \pageref*{ForCohesiveContexts} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{examples_of_contexts_for_lie_differentiation}{Examples of contexts for Lie differentiation}\dotfill \pageref*{examples_of_contexts_for_lie_differentiation} \linebreak \noindent\hyperlink{dggeometry}{dg-Geometry}\dotfill \pageref*{dggeometry} \linebreak \noindent\hyperlink{ExampleContextSyntheticDifferential}{Synthetic-differential $\infty$-groupoids}\dotfill \pageref*{ExampleContextSyntheticDifferential} \linebreak \noindent\hyperlink{examples_of_lie_differentiation}{Examples of Lie differentiation}\dotfill \pageref*{examples_of_lie_differentiation} \linebreak \noindent\hyperlink{of_a_lie_group}{Of a Lie group}\dotfill \pageref*{of_a_lie_group} \linebreak \noindent\hyperlink{of_a_lie_groupoid}{Of a Lie groupoid}\dotfill \pageref*{of_a_lie_groupoid} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Lie differentiation} is the process reverse to [[Lie integration]]. It sends a [[Lie group]] to its [[Lie algebra]] and more generally a [[Lie groupoid]] to its [[Lie algebroid]] and a [[smooth ∞-group]] to its [[L-∞ algebra]]. \begin{itemize}% \item For the moment, for ordinary [[Lie theory]] see at \emph{[[Lie's three theorems]]}. \item For [[infinity-Lie theory]] see at \emph{\href{synthetic+differential+infinity-groupoid#LieDifferentiation}{synthetic differential infinity-groupoid -- Lie differentiation}} . \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A formalization of the notion Lie differentiation in [[higher geometry]] has been given in (\hyperlink{Lurie}{Lurie}), inspired by and building on results discussed at \emph{[[model structure for L-∞ algebras]]}. This we discuss in \begin{itemize}% \item \hyperlink{ForDeformationContexts}{For deformation contexts} \end{itemize} We then specialize this to those \emph{[[deformation contexts]]}, def. \ref{DeformationContext}, that arise in the formalization of [[higher differential geometry]] by [[differential cohesion]]: \begin{itemize}% \item \hyperlink{ForCohesiveContexts}{For cohesive contexts} \end{itemize} This is the context in which one has a natural formulation of ordinary Lie differentiation of ordinary [[Lie groups]] to [[Lie algebras]] and its generalization to the Lie differentiation of [[smooth ∞-groups]] to [[L-∞ algebras]]. See the discussion of \emph{\hyperlink{Examples}{Examples}} below for more. \hypertarget{ForDeformationContexts}{}\subsubsection*{{For deformation contexts}}\label{ForDeformationContexts} \begin{defn} \label{DeformationContext}\hypertarget{DeformationContext}{} A \textbf{[[deformation context]]} is an [[(∞,1)-category]] $Sp_*$ such that \begin{enumerate}% \item it is a [[presentable (∞,1)-category]]; \item it contains an [[initial object in an (∞,1)-category|initial object]] \end{enumerate} and \begin{itemize}% \item equipped with a [[set]] of [[objects]] \begin{displaymath} \{E_\alpha \in Stab(Sp_*^{op})\} \end{displaymath} in the [[stabilization]] of the [[opposite (∞,1)-category]] $Sp_*^{op}$. \end{itemize} \end{defn} This is (\hyperlink{Lurie}{Lurie, def. 1.1.3}) together with the assumption of a terminal object in $Sp_*^{op}$ stated on p.9 (and later implicialy used). \begin{remark} \label{}\hypertarget{}{} Definition \ref{DeformationContext} is meant to be read as follows: We think of $Sp_*$ as an [[(∞,1)-category]] of [[pointed object|pointed]] [[spaces]] in some [[higher geometry]]. The point is the initial object. We think of the formal duals of the objects $\{E_\alpha\}_\alpha$ as a set of generating [[infinitesimally thickened points]] (points in [[formal geometry]]). \end{remark} The following construction generates the ``[[jets]]'' induced by the generating infinitesimally thickened points. \begin{defn} \label{SmallObjects}\hypertarget{SmallObjects}{} Given a [[deformation context]] $(Sp_*, \{E_\alpha\}_\alpha)$, we say \begin{itemize}% \item a [[morphism]] in $Sp_*^{op}$ is an \textbf{elementary morphism} if it is the [[homotopy fiber]] to a map into $\Omega^{\infty -n}E_\alpha$ for some $n \in \mathbb{Z}$ and some $\alpha$; \item a morphism in $Sp_*^{op}$ is a \textbf{small morphism} if it is the composite of [[finite set|finitely]] many elementary morphisms. \end{itemize} We write \begin{displaymath} Sp_*^{inf} \hookrightarrow Sp_* \end{displaymath} for the full [[sub-(∞,1)-category]] on those objects $A$ for which the essentially unique map $A \to *$ is small. \end{defn} (\hyperlink{Lurie}{Lurie, def. 1.1.8}) \begin{defn} \label{FormalModuliProblem}\hypertarget{FormalModuliProblem}{} Given a [[deformation context]] $(Sp_*, \{E_\alpha\}_\alpha)$, def. \ref{DeformationContext}, the [[(∞,1)-category]] of \textbf{[[formal moduli problems]]} over it is the full [[sub-(∞,1)-category]] of the [[(∞,1)-category of (∞,1)-presheaves]] over $Sp_*^{inf}$ \begin{displaymath} FormalModuli^{Sp_*} \hookrightarrow PSh_\infty(Sp_*^{inf}) \end{displaymath} on those [[(∞,1)-functors]] $X \colon (Sp_*^{inf})^{op} \to \infty Grpd$ such that \begin{enumerate}% \item over the [[terminal object]] they are [[contractible]]: $X(*) \simeq *$; \item they sends [[(∞,1)-colimits]] in $Sp_*^{inf}$ to [[(∞,1)-limits]] in [[∞Grpd]]. \end{enumerate} \end{defn} (\hyperlink{Lurie}{Lurie, def. 1.1.14}) (\hyperlink{Lurie}{Lurie, remark 1.1.7}). \begin{remark} \label{}\hypertarget{}{} This means that a ``formal deformation problem'' is a [[space]] in [[higher geometry]] whose geometric structure is detected by the ``test spaces'' in $Sp_*^{inf}$ in a way that respects gluing ([[descent]]) in $Sp_*^{inf}$ as given by [[(∞,1)-colimits]] there. The first condition requires that there is an essentially unique such probe by the point, hence that these higher geometric space have essentially a single global point. This is the condition that reflects the infinitesimal nature of the deformation problem. \end{remark} We will often just write $Sp_*$ for a deformation context $(Sp_*, \{E_\alpha\}_\alpha)$, when the objects $\{E_\alpha\}$ are understood. \begin{prop} \label{FormalModuliIsPresentableCategory}\hypertarget{FormalModuliIsPresentableCategory}{} The [[(∞,1)-category]] $FormalModuli^{Sp_*}$ of [[formal moduli problems]] is a [[presentable (∞,1)-category]]. Moreover it is a [[reflective sub-(∞,1)-category]] of the [[(∞,1)-category of (∞,1)-presheaves]] \begin{displaymath} FormalModuli^{Sp_*} \stackrel{\leftarrow}{\hookrightarrow} PSh_{\infty}(Sp_*) \,. \end{displaymath} \end{prop} \begin{prop} \label{LieDifferentiationFunctor}\hypertarget{LieDifferentiationFunctor}{} Given a [[deformation context]] $Sp_*$, the restricted [[(∞,1)-Yoneda embedding]] gives an [[(∞,1)-functor]] \begin{displaymath} Lie \;\colon\; Sp_* \to FormalModuli^{Sp_*} \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} For $(X,x) \in Sp_*$, the object $Lie(X,x)$ represents the \emph{[[formal geometry|formal neighbourhood]]} of the basepoint $x$ of $X$ as seen by the infinitesimally thickened points dual to the $\{E_\alpha\}$. Hence we may call this the operation of \textbf{Lie differentiation} of spaces in $Sp_*$ around their given base point. In the archetypical implementation of these axiomatics, discuss \hyperlink{Examples}{below}, there is an [[equivalence of (∞,1)-categories]] of [[formal moduli problems]] with [[L-∞ algebras]] and the Lie differentiation of the [[delooping]]/[[moduli ∞-stack]] $\mathbf{B}G$ of a [[smooth ∞-group]] $G$ is its [[L-∞ algebra]] $\mathfrak{g}$: $Lie(\mathbf{B}G) \simeq \mathbf{B}\mathfrak{g}$. \end{remark} \begin{prop} \label{LieDifferentiationPreservesLimits}\hypertarget{LieDifferentiationPreservesLimits}{} The Lie differentiation functor \begin{displaymath} Lie \; \colon \; Sp_* \to FormalModuli^{Sp_*} \end{displaymath} of prop. \ref{LieDifferentiationFunctor} preserves [[(∞,1)-limits]]. \end{prop} \begin{proof} By prop. \ref{FormalModuliIsPresentableCategory} the [[(∞,1)-limits]] in $FormalModuli^{Sp_*}$ may be computed in $PSh_\infty(Sp_*)$. There the statement is that of the [[(∞,1)-Yoneda embedding]], or rather just the statement that the [[derived hom space|(∞,1)-hom (∞,1)-functor]] $Sp_*(D,-)$ preserves $(\infty,1)$-limits. \end{proof} \hypertarget{ForCohesiveContexts}{}\subsubsection*{{For cohesive contexts}}\label{ForCohesiveContexts} \begin{quote}% under construction \end{quote} Let $\mathbf{H}_{th}$ be a [[cohesive (∞,1)-topos]] $(ʃ \dashv \flat \dashv \sharp)$ equipped with [[differential cohesion]] $(Red \dashv ʃ_{inf} \dashv \flat_{inf})$. \begin{defn} \label{ExhibitingInfinitesimalCohesion}\hypertarget{ExhibitingInfinitesimalCohesion}{} A set of objects $\{D_\alpha \in \mathbf{H}_{th}\}_\alpha$ is said to \textbf{exhibit the differential structure} or \textbf{exhibit the infinitesimal thickening} of $\mathbf{H}_{th}$ if the [[localization of an (∞,1)-category|localization]] \begin{displaymath} L_{\{D_\alpha\}} \mathbf{H}_{th} \stackrel{\leftarrow}{\hookrightarrow} \mathbf{H}_{th} \end{displaymath} of $\mathbf{H}_{th}$ at the morphisms of the form $D_\alpha \times X \to X$ is exhibited by the [[infinitesimal shape modality]] $ʃ_{inf} \coloneqq i^* i_*$ \begin{displaymath} \mathbf{H} \simeq L_{\{D_\alpha\}} \mathbf{H}_{th} \stackrel{\overset{i^*}{\leftarrow}}{\underset{i_*}{\hookrightarrow}} \mathbf{H}_{th} \,. \end{displaymath} \end{defn} \begin{Remark} \label{}\hypertarget{}{} Def. \ref{ExhibitingInfinitesimalCohesion} expresses the [[infinitesimal cohesion|infinitesimal]] analog of the notion of objects exhibiting [[cohesion]], see at , hence an infinitesimal notion of [[A1-homotopy theory]]. \end{Remark} \begin{prop} \label{ObjectsExhibitingDifferentialCohesionAreUniquelyPointed}\hypertarget{ObjectsExhibitingDifferentialCohesionAreUniquelyPointed}{} If objects $\{D_\alpha \in \mathbf{H}_{th}\}$ exhibit the differential cohesion of $\mathbf{H}_{th}$, then they are essentially uniquely pointed. \end{prop} \begin{proof} The localizing objects are in particular themselves [[local objects]] so that $ʃ_{inf} D_\alpha \simeq *$. By the $(Red \dashv ʃ_{inf})$-[[adjunctions]] this means that \begin{displaymath} \begin{aligned} \mathbf{H}_{th}(*, D_\alpha) & \simeq \mathbf{H}_{th}(Red(*), D_\alpha) \\ & \simeq \mathbf{H}_{th}(*, ʃ_{inf} D_\alpha) \\ & \simeq \mathbf{H}_{th}(*, *) \\ & \simeq * \end{aligned} \,. \end{displaymath} \end{proof} We now consider $(\mathbf{H}_{th}^{\ast/}, \{D_\alpha\})$ as a [[deformation context]], def. \ref{DeformationContext}. \begin{defn} \label{LieDifferentiationInCohesion}\hypertarget{LieDifferentiationInCohesion}{} Write \begin{displaymath} Lie \;\colon\; \mathbf{H}_{th}^{\ast/} \to FormalModuli^{\mathbf{H}_{th}^{*/}} \hookrightarrow PSh_\infty(\mathbf{H}_{th}^{*/}) \end{displaymath} for the Lie differentiaon [[(∞,1)-functor]], def. \ref{LieDifferentiationFunctor}, which sends $(x \colon * \to X) \in \mathbf{H}_{th}$ to \begin{displaymath} Lie(X,x) \;\colon\; D \mapsto \mathbf{H}^{\ast/}(D,(X,x)) \,. \end{displaymath} \end{defn} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{examples_of_contexts_for_lie_differentiation}{}\subsubsection*{{Examples of contexts for Lie differentiation}}\label{examples_of_contexts_for_lie_differentiation} \hypertarget{dggeometry}{}\paragraph*{{dg-Geometry}}\label{dggeometry} [[dg-geometry]] (the running example in (\hyperlink{Lurie}{Lurie})). \hypertarget{ExampleContextSyntheticDifferential}{}\paragraph*{{Synthetic-differential $\infty$-groupoids}}\label{ExampleContextSyntheticDifferential} \begin{itemize}% \item [[SynthDiff∞Grpd]] \end{itemize} (\ldots{}) \emph{\href{synthetic+differential+infinity-groupoid#LieDifferentiation}{synthetic differential infinity-groupoid -- Lie differentiation}} (\ldots{}) \hypertarget{examples_of_lie_differentiation}{}\subsubsection*{{Examples of Lie differentiation}}\label{examples_of_lie_differentiation} \hypertarget{of_a_lie_group}{}\paragraph*{{Of a Lie group}}\label{of_a_lie_group} (\ldots{}) \hypertarget{of_a_lie_groupoid}{}\paragraph*{{Of a Lie groupoid}}\label{of_a_lie_groupoid} Given a Lie groupoid $G_1\Rightarrow G_0$, we take the vector bundle $ker Ts|_{G_0}$ restricted on $G_0$, then we show that there is a [[Lie algebroid]] structure on $A:=ker Ts|_{G_0} \to G_0$. First of all, the anchor map is given by $ker Ts_{G_0} \xrightarrow{Tt} G_0$. Secondly, to define the Lie bracket, one shows that a section $X$ of $A$ may be right translated to a vector field on $G_1$, which is right invariant. Then Jacobi identity implies that right invariant vector fields are closed under Lie bracket. Thus Lie brackets on vector fields on $G_1$ induces a Lie bracket on sections of $A$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include infinitesimal and local - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Lie differentiation of [[Lie n-groupoids]] was first considered in generality in \begin{itemize}% \item [[Pavol ?evera]], \emph{$L_\infty$ algebras as 1-jets of simplicial manifolds (and a bit beyond)} (\href{http://arxiv.org/abs/math/0612349}{arXiv:0612349}) \end{itemize} See also theorem 8.28 of \begin{itemize}% \item Du Li, \emph{Higher Groupoid Actions, Bibundles, and Differentiation} (\href{http://arxiv.org/abs/1512.04209}{arXiv:1512.04209}) \end{itemize} Lie differentiation \hyperlink{ForDeformationContexts}{in deformation contexts} is formulated in section 1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Formal moduli problems]]} \end{itemize} \end{document}