\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lie group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{lies_three_theorems}{Lie's three theorems}\dotfill \pageref*{lies_three_theorems} \linebreak \noindent\hyperlink{classification}{Classification}\dotfill \pageref*{classification} \linebreak \noindent\hyperlink{different_lie_group_structures_on_a_group}{Different Lie group structures on a group}\dotfill \pageref*{different_lie_group_structures_on_a_group} \linebreak \noindent\hyperlink{different_topologies_on_a_lie_group}{Different topologies on a Lie group}\dotfill \pageref*{different_topologies_on_a_lie_group} \linebreak \noindent\hyperlink{which_topological_groups_admit_lie_group_structure}{Which topological groups admit Lie group structure?}\dotfill \pageref*{which_topological_groups_admit_lie_group_structure} \linebreak \noindent\hyperlink{homotopy_groups}{Homotopy groups}\dotfill \pageref*{homotopy_groups} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{in_differential_geometry}{In differential geometry}\dotfill \pageref*{in_differential_geometry} \linebreak \noindent\hyperlink{in_gauge_theory}{In gauge theory}\dotfill \pageref*{in_gauge_theory} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{basic_examples}{Basic examples}\dotfill \pageref*{basic_examples} \linebreak \noindent\hyperlink{classical_lie_groups}{Classical Lie groups}\dotfill \pageref*{classical_lie_groups} \linebreak \noindent\hyperlink{exceptional_lie_groups}{Exceptional Lie groups}\dotfill \pageref*{exceptional_lie_groups} \linebreak \noindent\hyperlink{infinitedimensional_examples}{Infinite-dimensional examples}\dotfill \pageref*{infinitedimensional_examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{homotopy_groups_2}{Homotopy groups}\dotfill \pageref*{homotopy_groups_2} \linebreak \noindent\hyperlink{ReferencesOnInfiniteDimensionalLieGroups}{On infinite-dimensional Lie groups}\dotfill \pageref*{ReferencesOnInfiniteDimensionalLieGroups} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{Lie group} is a [[group]] with [[smooth structure]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{Lie group} is a [[smooth manifold]] whose [[forgetful functor|underlying]] [[set]] of [[elements]] is equipped with the [[structure]] of a [[group]] such that the [[magma|group multiplication]] and [[inverse]]-assigning [[functions]] are [[smooth functions]]. In other words, a Lie group is a [[group object]] [[internalization|internal to]] the [[category]] [[SmthMfd]] of [[smooth manifolds]]. \end{defn} Usually the [[smooth manifold]] is assumed to be defined over the [[real numbers]] and to be of [[finite number|finite]] [[dimension]] (f.d.), but extensions of the definition to some other [[ground fields]] or to -[[infinite-dimensional manifolds]] are also relevant, sometimes under other names (such as [[Fréchet Lie group]] when the underlying manifold is an infinite-dimensional [[Fréchet manifold]]). A real Lie group is called a \emph{[[compact Lie group]]} (or \emph{connected}, \emph{simply connected} Lie group, etc) if its underlying [[topological space]] is [[compact space|compact]] (or [[connected space|connected]], [[simply connected space|simply connected]], etc). Every connected finite dimensional real Lie group is [[homeomorphism|homeomorphic]] to a [[product]] of a [[compact Lie group]] (its [[maximal compact subgroup]]) and a [[Euclidean space]]. Every [[abelian group|abelian]] connected compact finite dimensional real Lie group is a [[torus]] (a product of [[circles]] $T^n = S^1\times S^1 \times \ldots \times S^1$). There is an [[infinitesimal space|infinitesimal]] version of a Lie group, a so-called [[local Lie group]], where the multiplication and the inverse are only partially defined, namely if the arguments of these operations are in a sufficiently small neighborhood of identity. There is a natural equivalence of local Lie groups by means of agreeing (topologically and algebraically) on a smaller neighborhood of the identity. The category of local Lie groups is equivalent to the category of connected and simply connected Lie groups. The first order [[infinitesimal object|infinitesimal]] approximation to a Lie group is its [[Lie algebra]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{lies_three_theorems}{}\subsubsection*{{Lie's three theorems}}\label{lies_three_theorems} [[Sophus Lie]] has proved several theorems -- [[Lie's three theorems]] -- on the relationship between [[Lie algebra]]s and Lie groups. What is called [[Lie's third theorem]] is about the [[equivalence of categories]] of f.d. real Lie algebras and local Lie groups. [[Élie Cartan]] has extended this to a global integrability theorem called the Cartan-Lie theorem, nowadays after Serre also called Lie's third theorem. \hypertarget{classification}{}\subsubsection*{{Classification}}\label{classification} \begin{prop} \label{}\hypertarget{}{} Every connected finite-dimensional real Lie group is [[homeomorphism|homeomorphic]] to a [[product]] of a compact Lie group and a [[Cartesian space|Euclidean space]]. Every abelian connected compact f.d. real Lie group is a [[torus]] (a product of circles $T^n = S^1\times S^1 \times \ldots \times S^1$). \end{prop} The [[simple Lie group]]s have a classification into infinite series of \begin{itemize}% \item [[classical Lie group]]s \end{itemize} and a finite snumber o \begin{itemize}% \item [[exceptional Lie group]]s \end{itemize} \hypertarget{different_lie_group_structures_on_a_group}{}\subsubsection*{{Different Lie group structures on a group}}\label{different_lie_group_structures_on_a_group} For $G$ a bare [[group]] (without smooth structure) there may be more than one way to equip it with the [[stuff, structure, property|structure]] of a Lie group. \begin{example} \label{}\hypertarget{}{} As bare [[abelian group]]s, the [[Cartesian space]]s $\mathbb{R}^n$ are, for all $n$, [[vector space]]s over the [[rational number]]s $\mathbb{Q}$ whose [[dimension]] is the [[cardinality]] of the [[continuum]], $2^{\aleph_0}$. Therefore these are all [[isomorphic]] as bare group. But equipped with their canonical Lie group structure (as in the \hyperlink{Examples}{Examples}) they are of course not isomorphic. \end{example} \hypertarget{different_topologies_on_a_lie_group}{}\subsubsection*{{Different topologies on a Lie group}}\label{different_topologies_on_a_lie_group} \begin{itemize}% \item Linus Kramer, \emph{The topology of a simple Lie group is essentially unique}, (\href{http://arxiv.org/abs/1009.5457}{arXiv}) \end{itemize} \begin{quote}% Abstract: We study locally compact group topologies on simple Lie groups. We show that the Lie group topology on such a group $S$ is very rigid: every `abstract' isomorphism between $S$ and a locally compact and $\sigma$-compact group $\Gamma$ is automatically a homeomorphism, provided that $S$ is absolutely simple. If $S$ is complex, then non-continuous field automorphisms of the complex numbers have to be considered, but that is all. \end{quote} \hypertarget{which_topological_groups_admit_lie_group_structure}{}\subsubsection*{{Which topological groups admit Lie group structure?}}\label{which_topological_groups_admit_lie_group_structure} \begin{itemize}% \item \emph{[[Hilbert's fifth problem]]} \end{itemize} \hypertarget{homotopy_groups}{}\subsubsection*{{Homotopy groups}}\label{homotopy_groups} List of [[homotopy groups]] of the manifolds underlying the classical [[Lie groups]] are for instance in (\hyperlink{Abanov09}{Abanov 09}). \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{in_differential_geometry}{}\subsubsection*{{In differential geometry}}\label{in_differential_geometry} A central concept of [[differential geometry]] is that of a $G$-[[principal bundle]] $P \to X$ over a [[smooth manifold]] $X$ for $G$ a Lie group. \hypertarget{in_gauge_theory}{}\subsubsection*{{In gauge theory}}\label{in_gauge_theory} In the [[physics]] of [[gauge field]]s -- [[gauge theory]] -- Lie groups appear as local [[gauge group]]s parameterizing [[gauge transformation]]s: notably the [[Yang-Mills field]] is modeled by a $G$-[[principal bundle]] with [[connection on a bundle|connection]] for some Lie group $G$. For models that describe experimental observations the group $G$ in question is a quotient of a product of [[special unitary group]]s and the [[circle group]]. For details see [[standard model of particle physics]] \hypertarget{in_higher_category_theory}{}\subsection*{{In higher category theory}}\label{in_higher_category_theory} The notion of [[group]] generalizes in [[higher category theory]] to that of [[2-group]], \ldots{} [[∞-group]]. Accordingly, so does the notion of Lie group generalize to [[Lie 2-group]], \ldots{} [[∞-Lie group]]. For details see [[∞-Lie groupoid]]. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{basic_examples}{}\subsubsection*{{Basic examples}}\label{basic_examples} \begin{itemize}% \item The [[real line]] $\mathbb{R}$ with its standard [[smooth structure]] and the group operation being addition is a Lie group. So is every [[Cartesian space]] $\mathbb{R}^n$ with the componentwise addition of real numbers. \item The [[quotient]] of $\mathbb{R}$ by the subgroup of [[integer]]s $\mathbb{Z} \hookrightarrow \mathbb{R}$ is the [[circle group]] $S^1 = \mathbb{R}/\mathbb{Z}$. The quotient $\mathbb{R}^n/\mathbb{Z}^n$ is the $n$-[[dimension|dimensional]] [[torus]]. \item The [[automorphism group]] of any Lie group is canonically itself a Lie group: the \emph{[[automorphism Lie group]]}. \end{itemize} \hypertarget{classical_lie_groups}{}\subsubsection*{{Classical Lie groups}}\label{classical_lie_groups} The [[classical Lie groups]] include \begin{itemize}% \item the [[general linear group]] $GL(n)$ \item the [[orthogonal group]] $O(n)$ and [[special orthogonal group]] $SO(n)$; \item the [[unitary group]] $U(n)$ and [[special unitary group]] $SU(n)$; \item the [[symplectic group]] $Sp(2n)$. \end{itemize} \hypertarget{exceptional_lie_groups}{}\subsubsection*{{Exceptional Lie groups}}\label{exceptional_lie_groups} The [[exceptional Lie groups]] incude \begin{itemize}% \item [[G2]], [[F4]], [[E6]], [[E7]] [[E8]], \end{itemize} \hypertarget{infinitedimensional_examples}{}\subsubsection*{{Infinite-dimensional examples}}\label{infinitedimensional_examples} \begin{itemize}% \item [[stable unitary group]] \item [[loop group]] \item [[diffeomorphism group]] \begin{itemize}% \item [[symplectomorphism group]], [[quantomorphism group]] \end{itemize} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[semisimple Lie group]], [[simple Lie group]], [[exceptional Lie group]] \item [[real form]] \item [[compact Lie group]], [[maximal compact subgroup]] \item [[maximal torus]] \item [[rank of a Lie group]] \item [[conjugacy class]], [[Cartan-Dirac structure on a Lie group]] \item [[Weyl group]] \item [[Inönü-Wigner group contraction]] \item [[infinite-dimensional Lie group]] \item [[orbit method]] \item [[Hamiltonian dynamics on Lie groups]] \item [[complex Lie group]] \item [[Poisson Lie group]] \item [[invariant differential form]], [[Maurer-Cartan form]] \end{itemize} [[!include infinitesimal and local - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item A. L. Onishchik (ed.) \emph{Lie Groups and Lie Algebras} \begin{itemize}% \item \emph{I.} A. L. Onishchik, E. B. Vinberg, \emph{Foundations of Lie Theory}, \item \emph{II.} V. V. Gorbatsevich, A. L. Onishchik, \emph{Lie Transformation Groups} \end{itemize} Encyclopaedia of Mathematical Sciences, Volume 20, Springer 1993 \item [[Hans Duistermaat]], J. A. C. Kolk, \emph{Lie groups}, 2000 \item Joachim Hilgert, [[Karl-Hermann Neeb]], \emph{Structure and Geometry of Lie Groups}, Springer Monographs in Mathematics, Springer-Verlag New York, 2012 (\href{https://link.springer.com/book/10.1007/978-0-387-84794-8}{doi:10.1007/978-0-387-84794-8}) \item Mark Haiman, lecture notes by [[Theo Johnson-Freyd]], \emph{Lie groups}, Berkeley 2009 (\href{http://math.berkeley.edu/~theojf/LieGroups.pdf}{pdf}) \item [[Eckhard Meinrenken]], \emph{Lie groups and Lie algebas}, Lecture notes 2010 (\href{http://www.math.toronto.edu/mein/teaching/LectureNotes/lie.pdf}{pdf}) \end{itemize} \hypertarget{homotopy_groups_2}{}\subsubsection*{{Homotopy groups}}\label{homotopy_groups_2} \begin{itemize}% \item Alexander Abanov, Homotopy groups of Lie groups 2009 (\href{http://felix.physics.sunysb.edu/~abanov/Teaching/Spring2009/Notes/abanov-cpA1-upload.pdf}{pdf}) \end{itemize} \hypertarget{ReferencesOnInfiniteDimensionalLieGroups}{}\subsubsection*{{On infinite-dimensional Lie groups}}\label{ReferencesOnInfiniteDimensionalLieGroups} References on [[infinite-dimensional Lie groups]] \begin{itemize}% \item [[Andreas Kriegl]], [[Peter Michor]], \emph{Regular infinite dimensional Lie groups} Journal of Lie Theory Volume 7 (1997) 61-99 (\href{http://www.heldermann-verlag.de/jlt/jlt07/MICHPL.PDF}{pdf}) \item Rudolf Schmid, \emph{Infinite-Dimensional Lie Groups and Algebras in Mathematical Physics} Advances in Mathematical Physics Volume 2010, (\href{http://www.emis.de/journals/HOA/AMP/Volume2010/280362.pdf}{pdf}) \item Josef Teichmann, \emph{Infinite dimensional Lie Theory from the point of view of Functional Analysis} (\href{http://www.math.ethz.ch/~jteichma/diss.pdf}{pdf}) \item [[Karl-Hermann Neeb]], \emph{Monastir summer school: Infinite-dimensional Lie groups} (\href{http://www.math.uni-hamburg.de/home/wockel/data/monastir.pdf}{pdf}) \end{itemize} [[!redirects Lie groups]] [[!redirects classical group]] [[!redirects classical groups]] [[!redirects classical Lie group]] [[!redirects classical Lie groups]] \end{document}