\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lie-Poisson structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{abstractly}{Abstractly}\dotfill \pageref*{abstractly} \linebreak \noindent\hyperlink{DefinitionInComponents}{In components}\dotfill \pageref*{DefinitionInComponents} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{deformation_quantization_by_universal_enveloping_algebra}{Deformation quantization by universal enveloping algebra}\dotfill \pageref*{deformation_quantization_by_universal_enveloping_algebra} \linebreak \noindent\hyperlink{symplectic_groupoid}{Symplectic groupoid}\dotfill \pageref*{symplectic_groupoid} \linebreak \noindent\hyperlink{symplectic_leaves}{Symplectic leaves}\dotfill \pageref*{symplectic_leaves} \linebreak \noindent\hyperlink{PoissonLieAlgebroidCohomology}{Poisson-Lie algebroid cohomology}\dotfill \pageref*{PoissonLieAlgebroidCohomology} \linebreak \noindent\hyperlink{poisson_lie_group_structure}{Poisson Lie group structure}\dotfill \pageref*{poisson_lie_group_structure} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\mathfrak{g}$ a [[Lie algebra]] the underlying [[dual vector space]] $\mathfrak{g}^*$ canonically inherits the structure of a [[Poisson manifold]] whose Poisson [[Lie bracket]] reduces on linear functions $\mathfrak{g} \hookrightarrow C^\infty(\mathfrak{g}^*)$ to the original Lie bracket on $\mathfrak{g}$. This is the \textbf{Lie-Poisson structure} on $\mathfrak{g}^*$. More generally, for $\mathfrak{a}$ a [[Lie algebroid]] the fiberwise dual $\mathfrak{a}^*$ inherits such a Poisson manifold structure. [[Poisson manifold]] structures of this form are also called \emph{[[linear Poisson structures]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{abstractly}{}\subsubsection*{{Abstractly}}\label{abstractly} First notice that for $f \in C^\infty(\mathfrak{g}^\ast)$ as smooth function on the dual of a Lie algebra, then its [[de Rham differential]] 1-form at some $\alpha \in \mathfrak{g}^\ast$, being a linear map \begin{displaymath} \mathbf{d} f|_{\alpha} \colon T_\alpha \mathfrak{g}^\ast = \mathfrak{g}^\ast \longrightarrow \mathbb{R} \end{displaymath} is canonically identified with a Lie algebra element itself. With this understood, then for $f,g \in C^\infty(\mathfrak{g}^*)$ two [[smooth functions]] on $\mathfrak{g}^*$ their Poisson [[Lie bracket]] in the Lie-Poisson structure is defined by \begin{displaymath} \{f,g\} \;\colon\; \theta \mapsto -\theta ([\mathbf{d} f, \mathbf{d} g]) \,. \end{displaymath} Notice that for $v\in \mathfrak{g}$ regarded as a linear function $\langle -,v\rangle$ on $\mathfrak{g}^\ast$, then under the above identification we have $\mathbf{d} \langle -,v\rangle = v$. This means that on linear functions the Lie-Poisson bracket is simply the original Lie bracket: \begin{displaymath} \left\{ \langle -, v_1\rangle, \langle -, v_2\rangle, \right\} = \langle - ,[v_1,v_2]\rangle \,. \end{displaymath} This Lie-Poisson structure may be thought of as the unique smooth extension of this bracket on linear functions to all smooth functions on $\mathfrak{g}^\ast$. \hypertarget{DefinitionInComponents}{}\subsubsection*{{In components}}\label{DefinitionInComponents} Let $\{x^a\}$ be a [[basis]] for the [[vector space]] underlying the given [[Lie algebra]] $\mathfrak{g}$. Write $\{C^{a b}{}_c\}$ for the components of the [[Lie bracket]] $[-,-]$ in this basis (the structure constants), given by \begin{displaymath} [x^a,x^b] = \underset{c}{\sum} C^{a b}{}_c x^c \,. \end{displaymath} Write $\{\partial_a\}$ for the dual basis of the [[dual vector space]] $\mathfrak{g}^\ast$, so that the pairing $\mathfrak{g}^\ast \otimes\mathfrak{g} \to \mathbb{R}$ is given by \begin{displaymath} \partial_a x^b = \delta_a^b = \left\{ \itexarray{ 1 & if\; a=b \\ 0 & otherwise } \right. \end{displaymath} As the notation is meant to suggest, dually the $\{x^a\}$ may be regarded as basis for the linear functions on $\mathfrak{g}^\ast$ and the $\{\partial_a\}$ serve as a basis of [[vector fields]] on $\mathfrak{g}^\ast$. With this identification understood, the [[multivector fields]] on $\mathfrak{g}^\ast$ are spanned by elements of the form \begin{displaymath} v^{a_1 \cdots a_q} \partial_{a_1}\wedge \cdots \wedge \partial_{a_q} \end{displaymath} (with the sum over indices understood) for $\{v^{a_1 \cdots a_q}\}$ smooth functions on $\mathfrak{g}^\ast$. The [[Poisson tensor]] $\pi \in \wedge^2 \Gamma(T\mathfrak{g}^\ast)$ of the Lie-Poisson structure is given by \begin{displaymath} \pi = \tfrac{1}{2}\underset{a,b,c}{\sum} C^{a b}{}_c x^c \partial_a \wedge \partial_b \,. \end{displaymath} The [[Schouten bracket]] on multivector fields is given on linear basis elements by \begin{displaymath} \{x^a, x^b\}_{Sch} = 0 \end{displaymath} \begin{displaymath} \{\partial_a, x^b\}_{Sch} = \delta_a^b \end{displaymath} \begin{displaymath} \{\partial_a, \partial_b\}_{Sch} = 0 \end{displaymath} (the [[canonical commutation relations]]) and extended as a graded [[derivation]] in both arguments. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{deformation_quantization_by_universal_enveloping_algebra}{}\subsubsection*{{Deformation quantization by universal enveloping algebra}}\label{deformation_quantization_by_universal_enveloping_algebra} See at \emph{[[deformation quantization]]} the section \emph{\href{deformation+quantization#RelationToUniversalEnvelopingAlgebras}{Relation to universal enveloping algebras}}. \hypertarget{symplectic_groupoid}{}\subsubsection*{{Symplectic groupoid}}\label{symplectic_groupoid} The [[symplectic groupoid]] [[Lie integration|integrating]] the Lie-Poisson structure on $\mathfrak{g}^*$ is the [[action groupoid]] $\mathfrak{g}^* //G$ of the [[coadjoint action]]. For more see at \emph{[[symplectic groupoid]]} in the section \emph{\href{symplectic+groupoid#OfLiePoissonStructure}{Examples -- Of Lie-Poisson stucture}}. \hypertarget{symplectic_leaves}{}\subsubsection*{{Symplectic leaves}}\label{symplectic_leaves} The [[symplectic leaves]] of the Lie-Poisson structure on $\mathfrak{g}^*$ are the [[coadjoint orbits]]. \hypertarget{PoissonLieAlgebroidCohomology}{}\subsubsection*{{Poisson-Lie algebroid cohomology}}\label{PoissonLieAlgebroidCohomology} We consider the [[Poisson Lie algebroid]] $\mathfrak{P}(\mathfrak{g}^\ast)$ of a Lie-Poisson structure and the [[Lie algebroid cohomology]]. \begin{remark} \label{}\hypertarget{}{} By the discussion at \emph{[[Poisson Lie algebroid]]}, the graded algebra of [[multivector fields]] equipped with the [[differential]] given by the [[Schouten bracket]] with the [[Poisson bivector]] \begin{displaymath} d_{CE} = \{\pi, -\}_{Sch} \end{displaymath} is the [[Chevalley-Eilenberg algebra]] of this Lie algebroid: \begin{displaymath} CE(\mathfrak{P}(\mathfrak{g}^\ast)) = \left( \wedge^\bullet \Gamma(T\mathfrak{g}^\ast), d_{CE} = \{\pi, -\}_{Sch} \right) \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} As for every [[Poisson Lie algebroid]], the [[Poisson bivector]] $\pi \in CE(\mathfrak{P}(\mathfrak{g}^\ast))$ is a [[Lie algebroid cocycle]] of degree 2 \begin{displaymath} d_{CE}\pi = \{\pi,\pi\}_{Sch} = 0 \end{displaymath} (see also at \emph{[[symplectic Lie n-algebroid]]}). In view of the fact that here $\pi$ is just another incarnation of the [[Lie bracket]], this condition here is an incarnation of the [[Jacobi identity]] on the Lie algebra $(\mathfrak{g},[-,-])$. \end{remark} But in the simple case of Lie-Poisson structure, this cocycle is in fact exact: \begin{prop} \label{PoissonTensorCoboundary}\hypertarget{PoissonTensorCoboundary}{} For the Poisson-Lie structure on $\mathfrak{g}^\ast$ the [[Poisson tensor]] $\pi \in CE^2(\mathfrak{P}(\mathfrak{g}))$ has a [[coboundary]] and hence is trivial in [[Lie algebroid cohomology]]. \end{prop} \begin{proof} Consider the component-description from \hyperlink{DefinitionInComponents}{above}. We show that $x^a \partial_a$ is a coboundary. First notice that \begin{displaymath} \{x^b, x^a \partial_a \}_{Sch} = -x^b \end{displaymath} and \begin{displaymath} \{\partial_b, x^a \partial_a \}_{Sch} = \partial_b \,. \end{displaymath} From this we get \begin{displaymath} \begin{aligned} d_{CE} (x^a \partial_a) &= \left\{\pi,\; x^a \partial_a\right\}_{Sch} \\ & = \left\{\frac{1}{2} C^{a b}{}_c x^c \partial_a \wedge \partial_b,\; x^a \partial_a\right\}_{Sch} \\ & = (2-1) \frac{1}{2} C^{a b}{}_c x^c \partial_a \wedge \partial_b \\ & = \pi \end{aligned} \end{displaymath} \end{proof} \hypertarget{poisson_lie_group_structure}{}\subsubsection*{{Poisson Lie group structure}}\label{poisson_lie_group_structure} Under addition a Lie-Poisson manifold becomes a \emph{[[Poisson Lie group]]}, see there for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item a \emph{[[moment map]]} is often expresses as a Poisson homomorphism into a Lie-Poisson structure. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of Lie-Poisson structures was originally found by [[Sophus Lie]] and then rediscovered by [[Felix Berezin]] and by [[Alexander Kirillov]], [[Bertram Kostant]] and [[Jean-Marie Souriau]]. General accounts include \begin{itemize}% \item Izu Vaisman, section 3.1 of \emph{Lectures on the Geometry of Poisson Manifolds}, Birkh\"a{}user 1994 \item [[Camille Laurent-Gengoux]], \emph{Linear Poisson Structures and Lie Algebras}, chapter 7 pp 179-203 of Camille Laurent-Gengoux, Anne Pichereau, Pol Vanhaecke (eds.) \emph{Poisson Structures}, Grundlehren der mathematischen Wissenschaften book series (GL, volume 347) (\href{https://link.springer.com/chapter/10.1007/978-3-642-31090-4_7}{web}) \end{itemize} Review of the [[formal deformation quantization]] of Lie-Poisson structures via transfer of the product on the [[universal enveloping algebra]] of the given Lie algebra is for instance in \begin{itemize}% \item Simone Gutt, section 2.2. of \emph{Deformation quantization of Poisson manifolds}, Geometry and Topology Monographs 17 (2011) 171-220 (\href{http://msp.org/gtm/2011/17/gtm-2011-17-003p.pdf}{pdf}) \end{itemize} and generalization to more general polynomial Poisson algebras is discussed in \begin{itemize}% \item Michael Penkava, Pol Vanhaecke, \emph{Deformation Quantization of Polynomial Poisson Algebras}, Journal of Algebra 227, 365\~n{}393 (2000) (\href{https://arxiv.org/abs/math/9804022}{arXiv:math/9804022}) \end{itemize} The [[strict deformation quantization]] of Lie-Poisson structures was considered in \begin{itemize}% \item [[Marc Rieffel]], \emph{Lie group convolution algebras as deformation quantization of linear Poisson structures}, American Journal of Mathematics Vol. 112, No. 4 (Aug., 1990), pp. 657-685 (\href{http://www.jstor.org/stable/2374874}{jstor}) \end{itemize} The [[symplectic Lie groupoid]] [[Lie integration|Lie integrating]] Lie-Poisson structures is discussed as example 4.3 in \begin{itemize}% \item [[Henrique Bursztyn]], [[Marius Crainic]], \emph{Dirac structures, momentum maps and quasi-Poisson manifolds} (\href{http://www.preprint.impa.br/FullText/Bursztyn__Fri_Dec_23_11_24_19_BRDT_2005.html/alanfestimpa.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Victor Ginzburg]], [[Alan Weinstein]], \emph{Lie-Poisson structure on some Poisson Lie groups}, Journal of the AMS, volume 5, number 2 (1992) (\href{http://www.ams.org/journals/jams/1992-05-02/S0894-0347-1992-1126117-8/S0894-0347-1992-1126117-8.pdf}{pdf}) \end{itemize} [[!redirects Lie-Poisson structures]] \end{document}