\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Lie-Rinehart pair} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{Lie--Rinehart pair} is an algebraic encoding of the notion of \emph{[[Lie algebroid]]}. It is the pair consisting of the [[associative algebra]] of [[functions]] on the base space of the Lie algebroid and of the [[Lie algebra]] of its global [[sections]]. The [[anchor map]] of the Lie algebroid is encoded in the [[action]] of the Lie algebra on the associative algebra by [[derivations]] and the local structure is encoded in the Lie algebra being a [[module]] over the associative algebra. Since in this formulation the base manifold of the Lie algebroid is entirely described [[Isbell duality|dually]] in terms of its [[algebra of functions]], and since the definition does not refer to this being a \emph{commutative} algebra, the notion of Lie-Rinehart pair in fact generalizes the notion of Lie algebroid from ordinary [[differential geometry]] to [[noncommutative geometry]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \emph{Lie--Rinehart-pair} $(A,\mathfrak{g})$ is a pair consisting of \begin{enumerate}% \item an [[associative algebra]] $A$ \item a [[Lie algebra]] $\mathfrak{g}$ \end{enumerate} such that \begin{enumerate}% \item $A$ is a $\mathfrak{g}$-[[module]] \item $\mathfrak{g}$ is an $A$-[[module]] \end{enumerate} with both module structures being compatible in the obvious way: \begin{enumerate}% \item $\mathfrak{g}$ acts as [[derivations]] of $A$: that is, we have a Lie algebra [[homomorphism]] $\mathfrak{g} \to Der(A)$. \item $A$ acts as linear transformations of $\mathfrak{g}$ in a way obeying the [[Leibniz rule]]: that is, we have an associative algebra homomorphism $A \to End(\mathfrak{g})$, where $End(\mathfrak{g})$ is the algebra of all linear transformations of $\mathfrak{g}$, such that \begin{displaymath} [v, a w] = v(a) w + a [v,w]. \end{displaymath} \end{enumerate} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} In the case that $A = C^\infty(X)$ is the algebra of smooth functions on a smooth [[manifold]] $X$, Lie--Rinehart pairs $(C^\infty(X), \mathfrak{g})$ are naturally identified with [[Lie algebroid]]s over $X$: given the [[Lie algebroid]] in its incarnation as a [[vector bundle]] morphism \begin{displaymath} \itexarray{ E &&\stackrel{\rho}{\to}&& T X \\ & \searrow && \swarrow \\ && X } \end{displaymath} equipped with a bracket \begin{displaymath} [-,-] : \Gamma(E) \otimes\Gamma(E) \to \Gamma(E) \end{displaymath} we obtain a Lie--Rinehart pair by setting \begin{itemize}% \item $\mathfrak{g} = \Gamma(E)$ is the [[Lie algebra]] of [[sections]] of $E$ using the above bracket \item the action of $A$ on $\mathfrak{g}$ is the obvious multiplication of sections of vector bundles over $X$ by functions on $X$ \item the action of $\mathfrak{g}$ on $C^\infty(X)$ is given by first applying the anchor map $\rho$ and then using the canonical action of vector fields on functions. \end{itemize} So for all the examples listed at [[Lie algebroid]] we obtain an example for Lie--Rinehart pairs. In particular \begin{itemize}% \item the Lie--Rinehart pair coresponding to the [[tangent Lie algebroid]] of a [[manifold]] $X$ is $(C^\infty(X), \Gamma(T X))$ with the obvious action on each other. \item the Lie--Rinehart pair corresponding to an ordinary [[Lie algebra]] $\mathfrak{g}$ is $(\mathbb{R}, \mathfrak{g})$ with $\mathfrak{g}$ acting trivially on $\mathbb{R}$. \item the Lie--Rinehart pair corresponding to a [[Poisson Lie algebroid]] on a [[Poisson manifold]] $X$ is $(C^\infty(X), MultVect(X))$, where the [[Lie algebra]] is the the space of [[multivector fields]] on $X$ equipped with the [[Schouten bracket]]. \end{itemize} In \href{string%20field%20theory#OpenClosedStringFieldTheory}{open-closed string field theory} one finds at least one half of the axioms of homotopy Lie-Rinehart pairs. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} A little bit is known in the literature to generalizations of the notion of Lie--Rinehart algebras that are to [[Lie ∞-algebroids]] as the latter are to [[Lie algebroids]]. In \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{Courant--Dorfman algebras and their cohomology} (\href{http://arxiv.org/abs/0902.4862}{arXiv}) \end{itemize} the analogous algebraic structure for [[Courant algebroid]]s is discussed. These ``2-Lie--Rinehart algebras'' are called [[Courant?Dorfman algebra]]s there. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[bisections of a Lie groupoid]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original reference is \begin{itemize}% \item G. Rinehart, \emph{Differential forms for general commutative algebras}, Trans. Amer. Math. Soc. \textbf{108} (1963), 195-222 \end{itemize} A brief review in section 1 of \begin{itemize}% \item [[Johannes Huebschmann]], \emph{Lie--Rinehart algebras, descent, and quantization} (\href{http://arxiv.org/abs/math/0303016}{arXiv}) \item [[Mikhail Kapranov|M. Kapranov]], \emph{Free Lie algebroids and the space of paths}, Sel. Math. (N.S.) \textbf{13}, n. 2 277--319 (2007), \href{http://arxiv.org/abs/math.AG/0702584}{arXiv:math.AG/0702584}, \href{http://dx.doi.org/10.1007/s00029-007-0041-9}{doi} \item V. Nistor, [[Alan Weinstein]], [[Ping Xu]], \emph{Pseudodifferential operators on differential groupoids}, Pacific J. Math. \textbf{189}, 117--152 (1999) \end{itemize} A notion of universal enveloping algebra of a Lie--Rinehart algebra is discussed in \begin{itemize}% \item [[Ieke Moerdijk]], [[Janez Mrčun]], \emph{On the universal enveloping algebra of a Lie--Rinehart algebra}, Proc. Amer. Math. Soc. in press, (\href{http://www.ams.org/proc/0000-000-00/S0002-9939-10-10347-5/S0002-9939-10-10347-5.pdf}{pdf}, \href{http://arxiv.org/abs/0801.3929}{arXiv/0801.3929}) \end{itemize} A connection with [[BV-theory]] and [[L-infinity algebra]] is made in \begin{itemize}% \item [[Lars Kjeseth]], \emph{Homotopy Rinehart cohomology of homotopy Lie-Rinehart pairs}, Homology Homotopy Appl. Volume 3, Number 1 (2001), 139-163. (\href{https://projecteuclid.org/euclid.hha/1140370269}{Euclid}) \item [[Johannes Huebschmann]], \emph{Lie--Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras} (\href{http://aif.cedram.org/item?id=AIF_1998__48_2_425_0}{journal}) \end{itemize} [[!redirects Lie-Rinehart pairs]] [[!redirects Lie-Rinehart algebra]] [[!redirects Lie?Rinehart pair]] [[!redirects Lie?Rinehart algebra]] [[!redirects Lie--Rinehart pair]] [[!redirects Lie--Rinehart algebra]] [[!redirects Lie-Rinehart algebras]] [[!redirects Lie?Rinehart pairs]] [[!redirects Lie?Rinehart algebras]] [[!redirects Lie--Rinehart pairs]] [[!redirects Lie--Rinehart algebras]] [[!redirects homotopy Lie-Rinehart pair]] [[!redirects homotopy Lie-Rinehart pairs]] \end{document}