\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Möbius inversion} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{combinatorics}{}\paragraph*{{Combinatorics}}\label{combinatorics} [[!include combinatorics - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{mbius_inversion_for_posets}{M\"o{}bius inversion for posets}\dotfill \pageref*{mbius_inversion_for_posets} \linebreak \noindent\hyperlink{IncidenceAlgebrasZetaFn}{Incidence algebras and the zeta function}\dotfill \pageref*{IncidenceAlgebrasZetaFn} \linebreak \noindent\hyperlink{the_mbius_function_and_the_mbius_inversion_formula}{The M\"o{}bius function and the M\"o{}bius inversion formula}\dotfill \pageref*{the_mbius_function_and_the_mbius_inversion_formula} \linebreak \noindent\hyperlink{properties_of_the_mbius_function}{Properties of the M\"o{}bius function}\dotfill \pageref*{properties_of_the_mbius_function} \linebreak \noindent\hyperlink{duality}{Duality}\dotfill \pageref*{duality} \linebreak \noindent\hyperlink{the_product_formula}{The product formula}\dotfill \pageref*{the_product_formula} \linebreak \noindent\hyperlink{the_galois_coconnection_theorem}{The Galois coconnection theorem}\dotfill \pageref*{the_galois_coconnection_theorem} \linebreak \noindent\hyperlink{examples_of_mbius_inversion}{Examples of M\"o{}bius inversion}\dotfill \pageref*{examples_of_mbius_inversion} \linebreak \noindent\hyperlink{inclusionexclusion}{Inclusion-exclusion}\dotfill \pageref*{inclusionexclusion} \linebreak \noindent\hyperlink{numbertheoretic_mbius_inversion}{Number-theoretic M\"o{}bius inversion}\dotfill \pageref*{numbertheoretic_mbius_inversion} \linebreak \noindent\hyperlink{mbius_inversion_for_categories}{M\"o{}bius inversion for categories}\dotfill \pageref*{mbius_inversion_for_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The classical \emph{M\"o{}bius inversion formula} is a principle originating in [[number theory]], which says that if $f$ and $g$ are two (say, [[complex]]-valued) functions on the positive [[natural numbers]], then \begin{displaymath} f(n) = \sum_{d\mid n} g(d) \end{displaymath} if and only if \begin{displaymath} g(n) = \sum_{d\mid n} f(d)\mu(n/d) \end{displaymath} where the sums run over the divisors of $n$, and where $\mu$ is the \emph{M\"o{}bius function}: \begin{displaymath} \mu(n) = \begin{cases}(-1)^r & n\,\text{is the product of}\,r\,\text{distinct primes}\\0 & \text{otherwise}\end{cases} \end{displaymath} [[Gian-Carlo Rota]] \hyperlink{Rota64}{(1964)} described a vast generalization of the M\"o{}bius inversion formula, which was at the same time a generalization of the classical [[inclusion-exclusion]] principle in [[combinatorics]]. Rota's formulation of M\"o{}bius inversion applies to functions defined over [[partially ordered sets]], while further category-theoretic generalizations have also been proposed. \hypertarget{mbius_inversion_for_posets}{}\subsection*{{M\"o{}bius inversion for posets}}\label{mbius_inversion_for_posets} \hypertarget{IncidenceAlgebrasZetaFn}{}\subsubsection*{{Incidence algebras and the zeta function}}\label{IncidenceAlgebrasZetaFn} The \textbf{incidence algebra} of a poset $P$ (relative to a [[commutative ring]] $R$) is an [[associative unital algebra]] defined as follows. Its elements are functions $f : P \times P\to R$ such that $x \nleq y$ implies $f(x,y) = 0$. Pointwise addition $f+g$ and scalar multiplication $r\cdot f$ are defined straightforwardly ($(f+g)(x,y) = f(x,y) + g(x,y)$, $(r\cdot f)(x,y) = r\cdot f(x,y)$), while the \emph{convolution product} $f*g$ is defined as follows: \begin{displaymath} (f*g)(x,y) = \sum_{x \le z \le y} f(x,z) \cdot g(z,y) \end{displaymath} Note that the unit of the convolution product is the [[Kronecker delta]]: \begin{displaymath} \delta(x,y) = \begin{cases}1 & x = y \\ 0 & \text{otherwise}\end{cases} \end{displaymath} We write $I(P)$ for the incidence algebra of $P$. A special and important element of $I(P)$ is given by \begin{displaymath} \zeta(x,y) = \begin{cases}1 & x \le y \\ 0 & \text{otherwise}\end{cases} \end{displaymath} referred to as the \textbf{zeta function} of $P$. \hypertarget{the_mbius_function_and_the_mbius_inversion_formula}{}\subsubsection*{{The M\"o{}bius function and the M\"o{}bius inversion formula}}\label{the_mbius_function_and_the_mbius_inversion_formula} A \textbf{M\"o{}bius function} of $P$ is defined as an inverse to the zeta function with respect to the convolution product. Such an inverse always exists if the poset is [[locally finite poset|locally finite]], that is, if every [[interval]] $[x,y] = \{z \mid x \le z\le y\}$ is finite. \begin{prop} \label{}\hypertarget{}{} \hyperlink{Rota64}{(Rota 1964)}: If $P$ is a locally finite poset, then there exists a function $\mu$ such that $\zeta * \mu = \mu * \zeta = \delta$. \end{prop} \begin{proof} $\mu(x,y)$ can be computed by induction on the number of elements in the interval $[x,y]$. In the base case we set $\mu(x,x) = 1$. Otherwise in the case that $x \ne y$, we assume by induction that $\mu(x,z)$ has already been defined for all $z$ in the half-open interval $[x,y)$, and set \begin{displaymath} \mu(x,y) = -\sum_{x \le z \lt y} \mu(x,z). \end{displaymath} From this definition, it is immediate that if \begin{displaymath} x_0 \lt x_1 \lt \cdots \lt x_n \end{displaymath} is a chain of length $n$ in $P$, where each $x_{i+1}$ [[covering relation|covers]] $x_i$, then for all $i \leq j$, \begin{displaymath} \mu(x_i,x_j) = \begin{cases}1 & i = j \\ -1 & j - i = 1\\ 0 & j - i \ge 2\end{cases} \end{displaymath} It follows that both of the sums $\sum_{x \le z \le y} \mu(x,z)$ and $\sum_{x \le z \le y} \mu(z,y)$ add to zero unless $x = y$, hence that $\zeta*\mu = \mu*\zeta = \delta$. \end{proof} We are now ready to state the M\"o{}bius inversion formula(s) for posets. \begin{prop} \label{}\hypertarget{}{} \hyperlink{Rota64}{(Rota 1964)}: Let $f$ and $g$ be functions defined over a locally finite poset $P$. Then \begin{displaymath} f(y) = \sum_{x \le y} g(x) \qquad\text{if and only if}\qquad g(y) = \sum_{x \le y} f(x)\mu(x,y). \end{displaymath} Dually, we also have that \begin{displaymath} f(x) = \sum_{y \ge x} g(y) \qquad\text{if and only if}\qquad g(x) = \sum_{y \ge x} \mu(x,y)f(y). \end{displaymath} \end{prop} \begin{proof} An easy way of proving the M\"o{}bius inversion formulas \hyperlink{KungRotaYan}{(Kung et al.)} is to view $\zeta$ and $\mu$ as matrices acting on the column vectors $f$ and $g$ by multiplication. Then the first proposition simply says that $f = g * \zeta$ iff $f * \mu = g$, while the dual formulation says that $f = \zeta * g$ iff $\mu * f = g$. \end{proof} \hypertarget{properties_of_the_mbius_function}{}\subsection*{{Properties of the M\"o{}bius function}}\label{properties_of_the_mbius_function} \hypertarget{duality}{}\subsubsection*{{Duality}}\label{duality} The [[opposite poset]] $P^{op}$ has the same M\"o{}bius function as $P$ except with the arguments exchanged: \begin{displaymath} \mu_{P^{op}}(x,y) = \mu_P(y,x) \end{displaymath} \hypertarget{the_product_formula}{}\subsubsection*{{The product formula}}\label{the_product_formula} The M\"o{}bius function of the [[cartesian product]] $P \times Q$ of two posets $P$ and $Q$ is the product of their M\"o{}bius functions: \begin{displaymath} \mu_{P\times Q}((x,y), (x',y')) = \mu_P(x,x') \cdot \mu_Q(y,y') \end{displaymath} for all $x,x' \in P$ and $y,y' \in Q$. \hypertarget{the_galois_coconnection_theorem}{}\subsubsection*{{The Galois coconnection theorem}}\label{the_galois_coconnection_theorem} Suppose $P$ and $Q$ are related by an [[adjunction]] (i.e., covariant [[Galois connection]]) $f \dashv g : Q \to P$. Then for all $x \in P$, $y \in Q$, the following equation holds: \begin{displaymath} \sum_{\substack{u \in P\\ f(u) = y}} \mu_P(x,u) = \sum_{\substack{v \in Q \\ g(v) = x}} \mu_Q(v,y) \end{displaymath} (This result essentially goes back to \hyperlink{Rota64}{Rota (1964)} but in a slightly different formulation; for the above formulation, see \hyperlink{Greene81}{Greene (1981)}, \hyperlink{AguiarFS}{Aguiar and Ferrer Santos (2000)}, \hyperlink{KungRotaYan}{Kung et al. (2009)}.) \hypertarget{examples_of_mbius_inversion}{}\subsection*{{Examples of M\"o{}bius inversion}}\label{examples_of_mbius_inversion} \hypertarget{inclusionexclusion}{}\subsubsection*{{Inclusion-exclusion}}\label{inclusionexclusion} Let $\mathcal{P}X$ be the lattice of subsets of a finite set $X$. $\mathcal{P}X$ is isomorphic to the cartesian product of $|X|$ many copies of $\mathbf{2} = \{ 0 \lt 1 \}$, and so by the product rule for the M\"o{}bius function, we have \begin{displaymath} \mu(I,J) = (-1)^{|J|-|I|} \end{displaymath} for any pair of subsets $I,J \subseteq X$ such that $I \subseteq J$. The M\"o{}bius inversion formula then says that for any functions $f$ and $g$ defined on $\mathcal{P}X$, we have \begin{displaymath} f(J) = \sum_{I \subseteq J} g(I) \qquad\text{if and only if}\qquad g(J) = \sum_{I \subseteq J} (-1)^{|J|-|I|} f(I) \end{displaymath} or dually that \begin{displaymath} f(I) = \sum_{J \supseteq I} g(J) \qquad\text{if and only if}\qquad g(I) = \sum_{J \supseteq I} (-1)^{|J|-|I|} f(J) \end{displaymath} This is called the \emph{inclusion-exclusion} principle. As a textbook example of the inclusion-exclusion principle in action, suppose we want to compute $g(I)$ = the number of permutations of $X$ fixing exactly the elements in $I$. Well, it is easy to compute the number of permutations of $X$ fixing \emph{at least} the elements in $I$, \begin{displaymath} f(I) = \sum_{J \supseteq I} g(J) = (|X|-|I|)! \end{displaymath} but then we can compute $g$ in terms of $f$ via M\"o{}bius inversion. As a special case, when $|X| = n$ and $I = \emptyset$, we recover the classical formula for the number of \emph{derangements} of $n$ elements: \begin{displaymath} !n = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)! = \sum_{k=0}^n (-1)^k \frac{n!}{k!} \end{displaymath} where a derangement is defined as a permutation fixing no elements. \textbf{Exercise:} Prove that $n! = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)^n$. \hypertarget{numbertheoretic_mbius_inversion}{}\subsubsection*{{Number-theoretic M\"o{}bius inversion}}\label{numbertheoretic_mbius_inversion} The classical M\"o{}bius inversion formula is recovered by considering the set of positive natural numbers ordered by divisibility. \hypertarget{mbius_inversion_for_categories}{}\subsection*{{M\"o{}bius inversion for categories}}\label{mbius_inversion_for_categories} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Euler characteristic]] \item [[incidence algebra]] \item [[inclusion-exclusion]] \item [[zeta polynomial]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The classical reference on M\"o{}bius inversion for posets is: \begin{itemize}% \item [[Gian-Carlo Rota]], \emph{On the foundations of combinatorial theory I: theory of M\"o{}bius functions} , Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340--368. \end{itemize} and a more modern reference is: \begin{itemize}% \item Joseph P. S. Kung, [[Gian-Carlo Rota]], Catherine H. Yan. Combinatorics: The Rota Way. Cambridge, 2009. \end{itemize} M\"o{}bius inversion for categories is discussed in: \begin{itemize}% \item [[Tom Leinster]], \emph{Notions of M\"o{}bius inversion}, Bulletin of the Belgian Mathematical Society 19 (2012) 911-935, \href{http://arxiv.org/abs/1201.0413}{arXiv:1201.0413v3} \item $n$Cafe: \href{http://golem.ph.utexas.edu/category/2011/05/mbius_inversion_for_categories.html}{M\"o{}bius inversion for categories} \end{itemize} Other references include: \begin{itemize}% \item Curtis Greene, \emph{The M\"o{}bius Function of a Partially Ordered Set}, NATO Advanced Study Institute, Series C (1981), 555-581. \end{itemize} \begin{itemize}% \item [[Joachim Kock]], \emph{Incidence Hopf algebras}, \href{http://mat.uab.es/~kock/seminars/incidence-algebras.pdf}{pdf} \item Imma G\'a{}lvez-Carrillo, [[Joachim Kock]], Andrew Tonks, \emph{Decomposition spaces, incidence algebras and M\"o{}bius inversion}, \href{http://arxiv.org/abs/1404.3202}{arxiv/1404.3202} \item Metropolis, N.; Rota, Gian-Carlo, \emph{Witt vectors and the algebra of necklaces}, Advances in Mathematics \textbf{50} (2): 95--125 (1983) \href{http://dx.doi.org/10.1016%2F0001-8708%2883%2990035-X}{doi} \item [[Marcelo Aguiar]] and Walter Ferrer Santos, \emph{Galois connections for incidence Hopf algebras of partially ordered sets}, Adv. Math. 151 (2000), 71-100. \item wikipedia \href{http://en.wikipedia.org/wiki/M%C3%B6bius_function}{M\"o{}bius function}, \href{http://en.wikipedia.org/wiki/Moreau%27s_necklace-counting_function}{necklace polynomial} \end{itemize} category: combinatorics [[!redirects Mobius inversion]] [[!redirects Möbius function]] [[!redirects Moebius function]] [[!redirects Moebius inversion]] [[!redirects necklace polynomial]] \end{document}