\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{M-category} \hypertarget{categories}{}\section*{{$\mathcal{M}$-categories}}\label{categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{def}{Definitions}\dotfill \pageref*{def} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An $\mathcal{M}$-category is a [[category]] with two classes of [[morphisms]]: \emph{tight} and \emph{loose}. A [[categorification]] of the concept of $\mathcal{M}$-category to $2$-[[2-category|categories]] is the concept of $\mathcal{F}$-[[F-category|category]]. (There are other possible categorifications, such as locally $\mathcal{M}$-enriched $2$-categories, or locally $\mathcal{M}$-enriched $\mathcal{F}$-categories.) In particular, every $\mathcal{M}$-category is an $\mathcal{F}$-category with only identity $2$-[[2-morphism|morphisms]], and an $\mathcal{F}$-category becomes an $\mathcal{M}$-category upon forgetting its nonidentity $2$-cells. \hypertarget{def}{}\subsection*{{Definitions}}\label{def} Let $\mathcal{M}$ (or $Mono$) be the category whose [[objects]] are [[injections]] ([[monomorphisms]] in the [[category of sets]]) and whose [[morphisms]] are [[commutative squares]]. $\mathcal{M}$ is a [[reflective subcategory]] of the [[arrow category]] $Set^\to$ (the [[Sierpinski topos]]), where the reflector [[product-preserving functor|preserves products]]; as a result, $\mathcal{M}$ is [[complete category|complete]], [[cocomplete category|cocomplete]] [[cartesian closed category]]. (In fact, $\mathcal{M}$ is a Grothendieck [[quasitopos]], as discussed \href{free+cartesian+category#Subset}{here}: it is the category of [[separated presheaves]] for the [[double negation topology]] on $Set^\to$.) A ([[locally small category|locally small]]) \textbf{$\mathcal{M}$-category} is simply a [[category enriched]] over $\mathcal{M}$. In other words, where the hom-objects are pairs of sets $(T, L)$ where $T \subseteq L$. In more detail, an \textbf{$\mathcal{M}$-category} consists of the following data: \begin{itemize}% \item a [[class]] of \textbf{[[objects]]}; \item for each pair $x, y$ of objects, a [[set]] $L(x,y)$ of \textbf{loose [[morphisms]]}; \item for each pair $x, y$ of objects, a [[subset]] $T(x,y)$ of $L(x,y)$ of \textbf{tight morphisms}; \item for each object $x$, a tight \textbf{[[identity morphism]]} $id_x$; and \item for each triple $x, y, z$ of objects, a [[binary operation]] \textbf{[[composition]]} $\circ_{x,y,z}$ from $L(y,z)$ and $L(x,y)$ to $L(x,z)$ such that: \begin{itemize}% \item $f \circ g$ is tight whenever $f, g$ are; \item $\id_y \circ f = f = f \circ \id_x$ whenever this makes sense; and \item $(f \circ g) \circ h = f \circ (g \circ h)$ whenever this makes sense. \end{itemize} \end{itemize} Equivalently, an \textbf{$\mathcal{M}$-category} is a [[category]] of objects and \textbf{loose} morphisms together with a [[wide subcategory]] of \textbf{tight} morphisms. Note that the ``underlying ordinary category'' of an $\mathcal{M}$-category, in the usual sense that that phrase is used in [[enriched category]] theory, is its category of \emph{tight} morphisms. This is because the underlying ordinary category is induced by a monoidal change-of-base functor $\hom(I, -) \colon \mathcal{M} \to Set$ represented by the monoidal unit $I = (1, 1)$, where we have \begin{displaymath} \hom_{\mathcal{M}}((1, 1), (T, L)) \cong T. \end{displaymath} Nevertheless, it is frequently also useful to think of the category of loose morphisms as a sort of ``underlying ordinary category'' of an $\mathcal{M}$-category. This is effected by the monoidal change-of-base functor $\hom_{\mathcal{M}}((0, 1), -) \colon \mathcal{M} \to Set$, where we have \begin{displaymath} \hom_{\mathcal{M}}((0, 1), (T, L)) \cong L. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Every $\dagger$-[[dagger-category|category]] is an $\mathcal{M}$-category in which the tight morphisms are the [[unitary isomorphisms]]. In particular, [[Hilbert spaces]] form an $\mathcal{M}$-category with [[unitary operators]] as tight morphisms. \item A more interesting way to make Hilbert spaces into an $\mathcal{M}$-category [[Hilb]] uses (as in the $\dagger$-category $Hilb$) all [[bounded linear operators]] as loose morphisms but only [[short linear operators]] (those with norm at most $1$) as tight morphisms. This gives the same tight isomorphisms as the $\dagger$-category $Hilb$ (but also has non-invertible tight morphisms). \item Similarly, [[Ban]] (the category of [[Banach spaces]]) is an $\mathcal{M}$-category with all bounded linear operators as loose morphisms but only short linear operators as tight morphisms. In [[functional analysis]], a loose isomorphism in $Ban$ is traditionally called an `[[norm isomorphism|isomorphism]]' while a tight isomorphism is called a `[[global isometry]]'. \item We can make [[Met]] (the category of [[metric spaces]]) into an $\mathcal{M}$-category is several ways, with [[short maps]] contained in [[Lipschitz map]]s contained in [[uniformly continuous maps]] contained in [[continuous maps]]; we can also take Lipschitz maps contained in [[bounded maps]]. (For linear operators between Banach spaces, the continuous and bounded operators are the same and are already Lipschitz.) \item Any [[strict category]] is an $\mathcal{M}$-category with [[equality|equalities]] as the tight morphisms. (Thus the wide subcategory of tight morphisms is [[skeletal category|skeletal]].) In particular, the [[category of sets]] (or any category) in [[material set theory]] is an $\mathcal{M}$-category. \item A more interesting way to make [[material set theory]]'s [[category of sets]] into an $\mathcal{M}$-category has all [[subset]] inclusions as tight morphisms. Again the tight isomorphisms are simply the equalities. \item Given any category $C$ and object $a$ of $C$, the [[subobjects]] of $a$ form an $\mathcal{M}$-category whose category of loose morphisms is the [[full subcategory]] of $C$ on the subobjects of $a$ and whose category of tight morphisms is the [[subobject poset]] of $a$. \item Similarly, [[quotient objects]] form an $\mathcal{M}$-category. \item The \textbf{[[core]]} of every category $C$ is an $\mathcal{M}$-category whose loose morphisms are the morphisms of $C$ and whose tight morphisms are the [[isomorphisms]] of $C$. \item $\mathcal{M}$ itself is an $\mathcal{M}$-category whose objects are sets equipped with a specified subset, whose tight morphisms are functions which map the subset into each other, and whose loose morphisms are arbitrary functions. \item Given any [[faithful functor]] $F\colon C \to D$, we may make $C$ into an $\mathcal{M}$-category whose tight morphisms are the original morphisms of $C$ and whose loose morphisms from $x$ to $y$ are the $D$-morphisms from $F(x)$ to $F(y)$. This includes all of the examples above; up to [[equivalence of categories|equivalence]], this includes all examples. \item Let $T$ be a strict 2-monad on a strict 2-category. Then the strict $T$-algebras form an $\mathcal{M}$-category $T \mathrm{Alg}$ where tight morphisms are the strict algebra morphisms and the loose morphisms are the pseudo algebra morphsims. This is just a decategorified version of the $\mathcal{F}$-category of $T$-algebras, which also includes the 2-cells between algebras. \item More generally, any strict $\mathcal{F}$-category can be made into an $\mathcal{M}$-category by forgetting the non-identity 2-cells. \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item Any $\mathcal{M}$-category whose tight morphisms form a [[preorder]] can be made into a [[strict category]] in a canonical way: declare two objects to be equal if they are \emph{tightly} isomorphic. This is an unusual sort of strict category in that its ``equality predicate'' on objects may not be literal equality (even in a foundational system where the latter makes sense). Many strict categories that arise in practice underlie $\mathcal{M}$-categories, such as the category of sets in material set theory. Note that two \emph{equivalent} $\mathcal{M}$-categories with posetal tight categories (in the usual sense of equivalence for enriched categories) have \emph{isomorphic} underlying strict categories (in the appropriate sense, i.e. making use of the stipulated equality predicate on objects to define ``isomorphism''). In this way, some examples which may seem on the surface to be [[evil]], by referring to an isomorphism of categories, can alternatively be described non-evilly by recognizing the presence of a neglected $\mathcal{M}$-enrichment. \item For instance, let $G = Gal(E/F)$ be the [[Galois group]] of a finite [[Galois extension]] $E/F$. Then there is an $\mathcal{M}$-category whose objects are intermediate [[fields]] $F\subset K\subset E$, whose loose maps are arbitrary field homomorphisms that fix $F$ pointwise, and whose tight maps are those which commute with the inclusions into $E$. There is also an $\mathcal{M}$-category whose objects are [[orbits]] $G/H$, whose loose maps are arbitrary maps of $G$-sets, and whose tight maps are those which commute with the quotient maps from $G$. The fundamental theorem of classical [[Galois theory]] says that these two $\mathcal{M}$-categories are equivalent \emph{as $\mathcal{M}$-categories}. This is a stronger statement than saying that their underlying strict categories, as above, are isomorphic, which is yet stronger than saying that their underlying categories of loose maps are equivalent. See \href{http://article.gmane.org/gmane.science.mathematics.categories/5877}{this post} by [[Peter May]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} $\mathcal{M}$-categories are mentioned as $Subset$-categories (thinking of $\mathcal{M}$ as the category of [[subset]] inclusions) in \begin{itemize}% \item [[John Power]] (2002), Premonoidal categories as categories with algebraic structure, Theoretical Computer Science 278, \href{http://www.inf.ed.ac.uk/publications/online/0413.pdf}{pdf}. \end{itemize} We discussed them in the [[nlabmeta:n-Forum]] as part of a discussion of the category of [[Banach spaces]]: \begin{itemize}% \item [[Mark Meckes]] et al (2011), Banach space, n-Forum, (\href{https://nforum.ncatlab.org/discussion/3289/banach-space/}{discussion link}). \end{itemize} [[!redirects M-category]] [[!redirects M-categories]] [[!redirects Subset-category]] [[!redirects Subset-categories]] \end{document}