\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{M-complete category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{complete_and_cocomplete_categories}{}\section*{{$M$-complete and $E$-cocomplete categories}}\label{complete_and_cocomplete_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{construction_of_factorization_systems}{Construction of factorization systems}\dotfill \pageref*{construction_of_factorization_systems} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[category]] is $M$-complete or $E$-cocomplete if has certain [[limits]] or [[colimits]] of [[morphisms]] in a given class $M$ or $E$. Not to be confused with an [[M-category]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $C$ be a [[category]] and let $M$ be a class of [[monomorphisms]] in $C$. (Often, $M$ will be the right class in an [[orthogonal factorization system]].) We say that $C$ is \textbf{$M$-complete} if it admits all (even [[large category|large]]) [[intersections]] of $M$-[[subobjects]]. This means that it admits all (even large) [[wide pullbacks]] of families of $M$-morphisms, and such pullbacks are again in $M$. (If $M$ is the right class of an OFS, then any intersection of $M$-morphisms which exists is automatically in $M$.) If $M$ is the class of all monomorphisms, we may say \textbf{mono-complete} for $M$-complete. Dually, if $E$ is a class of [[epimorphisms]], we say $C$ is \textbf{$E$-cocomplete} if it admits all [[cointersection]]s of $E$-morphisms, and \textbf{epi-cocomplete} if $E$ is the class of all epimorphisms. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item If $C$ is $M$-[[well-powered category|well-powered]], then no large limits are required in the definition of $M$-completeness. Therefore, if $C$ is well-powered and [[complete category|complete]], it is $M$-complete whenever $M$ is the right class in an OFS. Dually, if $C$ is well-copowered and cocomplete, it is $E$-cocomplete whenever $E$ is the left class in an OFS. \item For similar reasons, the category [[FinSet]] is mono-complete and epi-cocomplete---although it is not complete or cocomplete, it is [[finitely complete category|finitely complete]] and [[finitely cocomplete category|cocomplete]], and its subobject lattices and quotient lattices are likewise [[essentially finite category|essentially finite]]. \item If $C$ is a [[topological concrete category]] over a category $D$ which is mono-complete or epi-complete, then $C$ is also mono-complete or epi-complete. For the faithful forgetful functor $U\colon C\to D$ preserves and reflects monos and epis, and so the [[weak structure|initial]] $C$-structure on an [[intersection]] of underlying monos in $D$ gives an intersection in $C$ and the [[strong structure|final]] $C$-structure on a [[cointersection]] of underlying epis in $D$ gives a cointersection in $C$. \end{itemize} \hypertarget{construction_of_factorization_systems}{}\subsection*{{Construction of factorization systems}}\label{construction_of_factorization_systems} $M$-completeness is useful for constructing [[orthogonal factorization systems]]. The following is Lemma 3.1 in \hyperlink{CHK}{CHK}. \begin{theorem} \label{ConstructingOFS}\hypertarget{ConstructingOFS}{} Let $M$ be a class of maps in a category $C$, and assume that \begin{enumerate}% \item $M$ consists of monomorphisms, \item $M$ is closed under [[composition]], \item all [[pullbacks]] of $M$-morphisms exist in $C$ and are again in $M$, and \item $C$ is $M$-complete. \end{enumerate} Then there is an orthogonal factorization system $(E,M)$, with $E = {}^\perp M$. \end{theorem} \begin{proof} Given $f\colon A\to B$, let $m$ be the intersection of all $M$-morphisms $n\colon X \to B$ through which $f$ factors. Then by the universal property of this intersection, we have $f = m e$ for some $e$; thus it suffices to show $e\in E$. Suppose given a commutative square \begin{displaymath} \itexarray{ A & \overset{g}{\to} & Z \\ ^e \downarrow & & \downarrow^p \\ Y & \underset{h}{\to} & W} \end{displaymath} with $p\in M$. By pulling $p$ back to $Y$ (since pullbacks of $M$-morphisms exist), we may assume that $Y=W$ and $h$ is the identity. But now the composite $m p$ is an $M$-morphism through which $f$ factors, so by definition, $m$ factors through it. Thus $p$ is an isomorphism and so the lifting problem can be solved. \end{proof} In fact, it is easy to see that the same proof constructs a [[factorization structure for sinks]]. Note that if $M$ is already part of a [[prefactorization system]], then any composite, pullback, or intersection of $M$-morphisms which exists is automatically also in $M$, since $M = E^\perp$. \begin{cor} \label{}\hypertarget{}{} Let $(E,M)$ be a [[prefactorization system]] on a category $C$, and assume that \begin{enumerate}% \item $M$ consists of monomorphisms, \item All pullbacks of $M$-morphisms exist in $C$, and \item $C$ is $M$-complete. \end{enumerate} Then $(E,M)$ is an orthogonal factorization system. \end{cor} The following is a slight generalization of Theorem 3.3 of \hyperlink{CHK}{CHK}. There it is stated only for the case $M=$ [[strong monomorphisms]], in which case a finitely complete and $M$-complete category is called \textbf{finitely well-complete}. \begin{theorem} \label{OFSFromAdjunction}\hypertarget{OFSFromAdjunction}{} Let $S : A \rightleftarrows C : T$ be an [[adjunction]], and assume that $A$ is finitely complete and $M$-complete for some OFS $(E,M)$, where $M$ consists of monomorphisms and contains the split monics. Define $E_S$ to be the class of maps inverted by $S$, and $M_S = (E_S)^\perp$; then $(E_S,M_S)$ is an OFS on $A$. \end{theorem} \begin{proof} First of all, since $M_S$ belongs to a prefactorization system, it is closed under composites, pullbacks, and any intersections which exist. Therefore, if we define $M' \coloneqq M \cap M_S$, then $M'$ satisfies the hypotheses of Theorem \ref{ConstructingOFS}, and so we have an OFS $(E',M')$. Moreover, it is useful to notice that $E_S={}^\perp T(\hom(C))$: this is an easy consequence of the fact that if $S\dashv T$, then $S a\perp b\iff a\perp T b$, since $f\perp T u\iff S f\perp u$ for each $u\in\hom(C)$, so that $S f$ is an isomorphism. Now suppose given $f\colon A\to B$; we want to construct an $(E_S,M_S)$-factorization. Let $v$ be the pullback of $T S f$ along the [[unit of an adjunction|unit]] $\eta_B \colon B \to T S B$. The naturality square for $\eta$ at $f$ shows that $f$ factors through $v$, say $f = v w$. \begin{displaymath} \begin{array}{ccccc} A & \\ &\overset{w}\searrow\\ && P &\overset{u}\to& T S A \\ && {}^v\downarrow && \downarrow^{T S f}\\ && B &\underset{\eta_B}\to& T S B \end{array} \end{displaymath} Since $T S f$ is evidently in $M_S=({}^\perp T(\hom(C)))^\perp\supseteq T(\hom (C))$, so is $v$; thus it suffices to find an $(E_S,M_S)$-factorization of $w$. Let $w = n g$ be the $(E',M')$-factorization of $w$. Since $M' \subseteq M_S$, it suffices to show that $g\in E_S$. Note also that since $w$ is a first factor of the unit $\eta_A$, by passing to adjuncts we find that $S w$ is [[split monic]]: in the former diagram we have $u w=\eta_A$, so that the adjunct $\epsilon_{S A} \cdot S u\cdot S n\cdot S g=1$, hence also $S g$ is a split monic. But $T S g$ is then also split monic, hence belongs to $M$ and thus also to $M'$ (since it obviously belong to $M_S=({}^\perp T(\hom(C)))^\perp\supseteq T(\hom (C))$). Therefore, since $g\in E'$, the naturality square for $\eta$ at $g$ contains a lift: there is an $\alpha\colon X\to T S A$ such that in the diagram \begin{displaymath} \begin{array}{ccc} A & \overset{\eta_A}\to & T S A \\ {}^g\downarrow && \downarrow^{T S g} \\ X &\overset{\eta_X}\to& T S X \end{array} \end{displaymath} $\alpha\cdot g=\eta_A$ and $T S g \cdot \alpha=\eta_X$. Passing to adjuncts again, we find that $S g$ is also [[split epic]], since we can consider the diagram \begin{displaymath} \begin{array}{ccccc} S A & \overset{S\eta_A}\longrightarrow & S T S A &\overset{\epsilon_{S A}}\longrightarrow & S A\\ {}^{S g}\downarrow && \phantom{aaa}\downarrow_{S T S g} &&\downarrow^{S g}\\ S X &\underset{S\eta_X}\longrightarrow & S T S X &\underset{\epsilon_{S X}}\longrightarrow & S X \end{array} \end{displaymath} and the commutativity \begin{displaymath} S g \cdot \epsilon_{S A} \cdot S\alpha = \epsilon_{S X} \cdot S T S g \cdot S\alpha = \epsilon_{S X}\cdot S\eta_X = 1 \end{displaymath} Hence $S g$ is an isomorphism; thus $g\in E_S$ as desired. \end{proof} This is useful in the construction of [[reflective factorization systems]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[complete category]] \item [[locally bounded category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Cassidy and H\'e{}bert and [[Max Kelly|Kelly]], ``Reflective subcategories, localizations, and factorization systems''. \emph{J. Austral. Math Soc. (Series A)} 38 (1985), 287--329 \end{itemize} [[!redirects M-complete category]] [[!redirects M-complete categories]] [[!redirects mono-complete category]] [[!redirects mono-complete categories]] [[!redirects E-cocomplete category]] [[!redirects E-cocomplete categories]] [[!redirects epi-cocomplete category]] [[!redirects epi-cocomplete categories]] [[!redirects finitely well-complete category]] [[!redirects finitely well-complete categories]] \end{document}