\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{M-theory lift of gauge enhancement on D6-branes} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{singularity_and_gauge_enhancement}{$A_{N-1}$-singularity and $SU(N)$-gauge enhancement}\dotfill \pageref*{singularity_and_gauge_enhancement} \linebreak \noindent\hyperlink{singularity_and_gauge_enhancement_2}{$D_{N}$-singularity and $SO(2N)$-gauge enhancement}\dotfill \pageref*{singularity_and_gauge_enhancement_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{refrences}{Refrences}\dotfill \pageref*{refrences} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} It is well understood that in [[type IIA string theory]] there appears \begin{itemize}% \item $SU(N)$ [[enhanced gauge symmetry]] on $N$-coincident [[D-branes]]; \item $SO(2N)$ enhanced gauge symmetry on $N$-coincident [[D-branes]] at an [[orientifold plane]]. \end{itemize} The physical picture of this effect is that the gauge bosons of these [[gauge fields]] are the modes of the [[open strings]] stretching between these D-branes which become massless as the branes coincide. Now, as the situation is lifted to [[M-theory]], the [[D0-branes]], [[D2-branes]] and [[D4-branes]] lift to [[M2-branes]] and [[M5-branes]], and the gauge enhancement is thought to be similarly reflected on these [[M-branes]] (as exhibited for the [[M2-branes]] by the [[BLG-model]] and [[ABJM-model]]). But for the [[D6-brane]] the situation is different: the [[D6-brane]] lifts not to an [[M-brane]], but to a configuration of the [[field (physics)|field]] of [[11-dimensional supergravity]]: the 11d [[Kaluza-Klein monopole]]. Here we discuss the picture of how [[gauge enhancement]] on [[D6-branes]] in [[type IIA string theory]] is reflected on [[Kaluza-Klein monopoles]] at [[ADE-singularities]]. The explicit realization reviewed below is due to (\hyperlink{Sen97}{Sen 97}). \begin{quote}% graphics grabbed from \href{http://ncatlab.org/schreiber/show/Equivariant+homotopy+and+super+M-branes}{HSS18} \end{quote} \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} \hypertarget{singularity_and_gauge_enhancement}{}\subsubsection*{{$A_{N-1}$-singularity and $SU(N)$-gauge enhancement}}\label{singularity_and_gauge_enhancement} The 11d multi-centered [[Kaluza-Klein monopole]] [[spacetime]] has [[metric tensor]] of the form \begin{displaymath} ds^2 \coloneqq - d t^2 + \underoverset{n = 5}{10}{\sum} d y^n d y^n + ds^2_{TN} \,, \end{displaymath} where \begin{displaymath} ds^2_{TN} \coloneqq V^{-1}( d x^4 + \vec \omega \cdot d \vec r )^2 + V d \vec r^2 \end{displaymath} is the metric tensor of the multi-centered [[Taub-NUT space]], with $x^4$ the canonical coordinate on a [[circle]] and with \begin{displaymath} V \coloneqq 1 + \underoverset{I = 1}{N}{\sum} \frac{4m}{{\vert \vec r - \vec r_I\vert}} \end{displaymath} and \begin{displaymath} \vec \nabla \times \vec \omega = - \vec \nabla V \end{displaymath} for $\{\vec r_I\}_{I =1}^N$ the set of positions of the KK-monopoles of mass $m$. Notice that the radius $16 \pi m V^{-1/2}$ of the $x^4$-circle vanishes precisely at the positions $\vec r_I$. Nevertheless, as long as all the $\vec r_I$ are distinct, then the above is a smooth spacetime also at the positions of the $\vec r_I$ -- if the periodicity of $x^4$ is taken to be $16 \pi m$. But with this periodicity fixed, then as the $N$ monopole positions $\vec r_I$ coincide, then the resulting metric has a [[conical singularity]] at that point, of [[ADE-singularity]] type $A_{N-1}$. To see where the gauge enhancement arises from in this singular case, observe that in the non-singular configuration there are $N-1$ linearly indepent 2-[[cycles]] $S_{i j}$ in the multi-center KK-monopole spacetime, represented by the the [[2-spheres]] that are swept out by the circle fiber as it moves from $\vec r_i$ to $\vec r_j$ (remembering that the circle fiber radius vanishes precisely at the positions $\vec r_I$). For the canonical choice of straight path between $\vec r_i$ and $\vec r_j$ (and arbitrary fixed position in the remaining 7 dimensions) then the [[surface]] [[area]] of these [[2-spheres]] is \begin{displaymath} vol(S_{i j}) = 16 \pi m {\vert \vec r_i - \vec r_j\vert} \,. \end{displaymath} For any other choice of path the surface area will be larger. Hence an [[M2-brane]] with tension $T_{M2}$ [[wrapped brane|swrapping]] the 2-[[cycle]] $S_{i j}$ has minimal tension energy when in the configuration of these spheres, namely \begin{displaymath} m_{i j} = 16 \pi m T_{M2} {\vert \vec r_i - \vec r_j\vert} \,. \end{displaymath} The type IIA limit is given by $m \to 0$. In this limit the [[M2-branes]] wrapping the above cycles become the type IIA [[superstring]] by [[double dimensional reduction]], the [[KK-monopoles]] become the [[D6-branes]], and it is evident from the geometry that the membrane warpping $S_{i j}$ becomes an [[open string]] strentching between the $i$th and the $j$th D6-brane. In the limit $m \to 0$ the D6-branes coincide,the strings stretching between them become massless (in accord with the above formula for the wrapped M2-brane mass), and become the gauge bosons of an $SU(N)$ [[Chan-Paton gauge field]]. (\href{Sen97}{Sen 97, section 2}) \hypertarget{singularity_and_gauge_enhancement_2}{}\subsubsection*{{$D_{N}$-singularity and $SO(2N)$-gauge enhancement}}\label{singularity_and_gauge_enhancement_2} Now consider the above setupmodified by replacing the [[Taub-NUT space]] with coordinates $(\vec r, x^4)$ by its $\mathbb{Z}/2$-[[orbifold]] given by the $\mathbb{Z}/2$-[[action]] with nontrivial operation given by \begin{displaymath} (\vec r, x^4) \mapsto (- \vec r, - x^4) \end{displaymath} and in the Taub-NUT metric replace $V$ by \begin{displaymath} V \coloneqq 1 - \frac{16m}{r} + \underoverset{i = 1}{N}{\sum} \left( \frac{4m}{\vert \vec r - \vec r_i\vert} + \frac{4m}{\vert \vec r + \vec r_i\vert} \right) \,. \end{displaymath} The type IIA image of the origin of this configuration is an [[orientifold plane]]. Now as the $\vec r_i$ all approach 0 we get an 11d spacetime with a $D_N$-type [[ADE-singularity]], whose type IIA image is $N$ D6-branes coincident on an [[orientifold plane]]. (\href{Sen97}{Sen 97, section 3}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[heterotic M-theory on ADE-orbifolds]] \item [[membrane triple junction]] \end{itemize} [[!include F-branes -- table]] \hypertarget{refrences}{}\subsection*{{Refrences}}\label{refrences} \begin{itemize}% \item [[Ashoke Sen]], \emph{A Note on Enhanced Gauge Symmetries in M- and String Theory}, JHEP 9709:001,1997 (\href{http://arxiv.org/abs/hep-th/9707123}{arXiv:hep-th/9707123}) \end{itemize} \end{document}