\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{M-theory supersymmetry algebra} [[!redirects M-theory super Lie algebra]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_the_algebra_of_conserved_currents_of_the_mbranes}{As the algebra of conserved currents of the M-branes}\dotfill \pageref*{as_the_algebra_of_conserved_currents_of_the_mbranes} \linebreak \noindent\hyperlink{as_the_lie_algebra_of_derivations_of_the_sugra_lie_3algebra}{As the Lie algebra of derivations of the SuGra Lie 3-algebra}\dotfill \pageref*{as_the_lie_algebra_of_derivations_of_the_sugra_lie_3algebra} \linebreak \noindent\hyperlink{AsAn11DimensionalBoundaryCondition}{As an 11-dimensional boundary condition for the M2-brane}\dotfill \pageref*{AsAn11DimensionalBoundaryCondition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{ReferencesFromTheM2Cocycle}{From the M2-Cocyle}\dotfill \pageref*{ReferencesFromTheM2Cocycle} \linebreak \noindent\hyperlink{alternative}{Alternative}\dotfill \pageref*{alternative} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[super Lie algebra]] which is a \href{super+Poincare+Lie+algebra#PolyvectorExtensions}{polyvector} [[Lie algebra extension|extension]] of the [[super Poincaré Lie algebra]] ([[supersymmetry]]) in $D = 10+1$ for $N=1$ [[supersymmetry]] by [[charges]] corresponding to the [[M2-brane]] and the [[M5-brane]] (``[[extended supersymmetry]]''). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_the_algebra_of_conserved_currents_of_the_mbranes}{}\subsubsection*{{As the algebra of conserved currents of the M-branes}}\label{as_the_algebra_of_conserved_currents_of_the_mbranes} In (\hyperlink{AGIT89}{AGIT 89}) it is shows that the M-algebra-like polyvector extensions arise as the algebras of [[conserved currents]] of the [[Green-Schwarz super p-brane sigma-models]]. By the discussion at \href{conserved+current#InHigherPrequantumGeometry}{conserved current -- In higher prequantum geometry} this means that this is the degree-0 piece in the [[Heisenberg Lie n-algebra]] which is induced by regarding the WZW-curvature terms as super [[n-plectic forms]] on $\mathbb{R}^{10,1|32}$. \hypertarget{as_the_lie_algebra_of_derivations_of_the_sugra_lie_3algebra}{}\subsubsection*{{As the Lie algebra of derivations of the SuGra Lie 3-algebra}}\label{as_the_lie_algebra_of_derivations_of_the_sugra_lie_3algebra} In (\hyperlink{Castellani05}{Castellani 05}) it is implicitly shown, (\hyperlink{FSS13}{FSS 13}), that the M-extension arises as the [[derivations]]/automorphisms of the [[supergravity Lie 3-algebra]]/[[supergravity Lie 6-algebra]] (see there for the details). \hypertarget{AsAn11DimensionalBoundaryCondition}{}\subsubsection*{{As an 11-dimensional boundary condition for the M2-brane}}\label{AsAn11DimensionalBoundaryCondition} The original construction in (\hyperlink{DAuriaFre82}{D'Auria-Fré 82}) asks for a [[super Lie algebra]] [[Lie algebra extension|extension]] $\mathbb{R}^{10,1\vert 32} \rtimes \mathfrak{g}$ of [[super Minkowski spacetime]] $\mathbb{R}^{10,1\vert 32}$ such that the 4-[[cocycle]] $\mu_4 = \overline{\psi} \wedge \Gamma^{a b} \psi \wedge e_a \wedge e_b$ for the M2-brane trivializes when pulled back to this: \begin{displaymath} \itexarray{ & & \mathbb{R}^{10,1\vert 32} \rtimes \mathfrak{g} \\ & \swarrow && \searrow \\ \ast && \swArrow_{\simeq} && \mathbb{R}^{10,1\vert 32} \\ & \searrow && \swarrow_{\mathrlap{\mu_4}} \\ && B^{3}\mathbb{R} } \,. \end{displaymath} (In the language of [[local prequantum field theory]] this identifies a [[boundary condition]] for the WZW term of the M2-brane.) They find, see also (\hyperlink{BandosAzcarragaIzquierdoPiconVarela04}{Bandos-Azcarraga-Izquierdo-PiconVarela 04}) that a solution for $\mathfrak{g}$ includes a fermionic extension of the M-theory super Lie algebra. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[type II super Lie algebra]] \item [[BPS state]] \item [[supergravity Lie 3-algebra]] \item [[supergravity Lie 6-algebra]] \item [[M2-brane]], [[M5-brane]] \item [[M-theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{ReferencesFromTheM2Cocycle}{}\subsubsection*{{From the M2-Cocyle}}\label{ReferencesFromTheM2Cocycle} Two versions of a fermionic extension of the Polyvector extensions of $\mathfrak{Iso}(\mathbb{R}^{10,1|32})$ on which the [[M2-brane]] [[Lie algebra cohomology|4-cocycle]] trivializes were first found in \begin{itemize}% \item [[Riccardo D'Auria]], [[Pietro Fré]], last pages of \emph{[[GeometricSupergravity.pdf:file]]}, Nuclear Physics B201 (1982) 101-140 \end{itemize} and then a 1-parameter family of such was discovered in \begin{itemize}% \item [[Igor Bandos]], [[José de Azcárraga]], J.M. Izquierdo, M. Picon, O. Varela, \emph{On the underlying gauge group structure of D=11 supergravity}, Phys.Lett.B596:145-155,2004 (\href{http://arxiv.org/abs/hep-th/0406020}{arXiv:hep-th/0406020}) \item [[Igor Bandos]], [[José de Azcárraga]], Moises Picon, Oscar Varela, \emph{On the formulation of $D=11$ supergravity and the composite nature of its three-from field}, Annals Phys. 317 (2005) 238-279 (\href{https://arxiv.org/abs/hep-th/0409100}{arXiv:hep-th/0409100}) \end{itemize} That a limiting case of this is given by the [[orthosymplectic super Lie algebra]] $\mathfrak{osp}(1\vert 32)$ is due to \begin{itemize}% \item J.J. Fernandez, J.M. Izquierdo, M.A. del Olmo, \emph{Contractions from $osp(1|32) \oplus osp(1|32)$ to the M-theory superalgebra extended by additional fermionic generators}, Nuclear Physics B Volume 897, August 2015, Pages 87--97 (\href{http://arxiv.org/abs/1504.05946}{arXiv:1504.05946}) \end{itemize} Further discussion is in \begin{itemize}% \item [[Laura Andrianopoli]], [[Riccardo D'Auria]], [[Lucrezia Ravera]], \emph{Hidden Gauge Structure of Supersymmetric Free Differential Algebras}, JHEP 1608 (2016) 095 (\href{https://arxiv.org/abs/1606.07328}{arXiv:1606.07328}) \item [[Laura Andrianopoli]], [[Riccardo D'Auria]], [[Lucrezia Ravera]], \emph{More on the Hidden Symmetries of 11D Supergravity} (\href{https://arxiv.org/abs/1705.06251}{arXiv:1705.06251}) \end{itemize} where the algebra is referred to as the \emph{DF-algebra}, in honor of \hyperlink{DAuriaFre82}{D'Auria-Fré 82}. All this is reviewed in \begin{itemize}% \item [[José de Azcárraga]], section 5 of \emph{Superbranes, D=11 CJS supergravity and enlarged superspace coordinates/fields correspondence}, AIP Conf. Proc. 767:243-267, 2005 (\href{https://arxiv.org/abs/hep-th/0501198}{arXiv:hep-th/0501198}) \end{itemize} Another, alternative ``weak [[decomposable differential form|decomposition]]'' of the M2-brane [[extended super-Minkowski spacetime]] was found in \begin{itemize}% \item [[Lucrezia Ravera]], section 3 of \emph{Hidden Role of Maxwell Superalgebras in the Free Differential Algebras of D=4 and D=11 Supergravity} (\href{https://arxiv.org/abs/1801.08860}{arXiv:1801.08860}) \end{itemize} with the interesting difference that for this splitting [[super Lie algebra]] is non-abelian, in fact an extension of the Lie algebra of the [[Spin group]] $Spin(10,1)$ (\hyperlink{Ravera18}{Ravera 18, (3.5)-(3-6)}). See also \begin{itemize}% \item [[Lucrezia Ravera]], \emph{Group Theoretical Hidden Structure of Supergravity Theories in Higher Dimensions} (\href{https://arxiv.org/abs/1802.06602}{arXiv:1802.06602}) \end{itemize} That the underlying bosonic [[body]] of this super Lie algebra happens to be the [[typical fiber]] of what would be the 11-d [[exceptional generalized tangent bundle]], namely the \href{E11#FundamentalRepresentationAndBraneCharges}{level-2 truncation of the l1-representation} of [[E11]] according to (\href{E11#West04}{West 04}) was highlighted in the review \begin{itemize}% \item [[Silvia Vaula]], \emph{On the underlying $E_{11}$ symmetry of the $D= 11$ Free Differential Algebra}, JHEP 0703:010, 2007 (\href{http://arxiv.org/abs/hep-th/0612130}{arXiv:hep-th/0612130}) \end{itemize} For analogous discussion in [[7d supergravity]] and [[4d supergravity]], see the references there. \hypertarget{alternative}{}\subsubsection*{{Alternative}}\label{alternative} From a different perspective the M-theory algebra extensions were (apparently independently) introduced in \begin{itemize}% \item [[Jan-Willem van Holten]], [[Antoine Van Proeyen]], \emph{$N=1$ supersymmetry algebras in $d=2,3,4 \,mod\, 8$} J.Phys. A15, 3763 (1982). \item [[Paul Townsend]], \emph{p-Brane Democracy} (\href{http://arxiv.org/abs/hep-th/9507048}{arXiv:hep-th/9507048}) \end{itemize} with further amplification including \begin{itemize}% \item [[Paul Townsend]], \emph{M(embrane) theory on $T^0$}, Nucl.Phys.Proc.Suppl.68:11-16,1998 (\href{http://arxiv.org/abs/hep-th/9708034}{arXiv:hep-th/9708034}) \item [[Paul Townsend]], \emph{M-theory from its superalgebra}, Cargese lectures 1997 (\href{http://arxiv.org/abs/hep-th/9712004}{arXiv:hep-th/9712004}) \end{itemize} In their global form, where differential forms are replaced by their de Rham cohomology classes on curved superspacetimes, these algebras were identified (for the case including the 2-form piece but not the 5-form piece) as the algebras of [[conserved currents]] of the [[Green-Schwarz super p-brane sigma-models]] in \begin{itemize}% \item [[José de Azcárraga]], [[Jerome Gauntlett]], J.M. Izquierdo, [[Paul Townsend]], \emph{Topological Extensions of the Supersymmetry Algebra for Extended Objects}, Phys.Rev.Lett. 63 (1989) 2443 (\href{https://inspirehep.net/record/26393?ln=en}{spire}) \end{itemize} reviewed in \begin{itemize}% \item [[José de Azcárraga]], Jos\'e{} M. Izquierdo, section 8.8 of \emph{[[Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics]]}, Cambridge monographs of mathematical physics, (1995) \end{itemize} The generalization of this including also the contribution of the [[M5-brane]] was considered in \begin{itemize}% \item [[Dmitri Sorokin]], [[Paul Townsend]], \emph{M-theory superalgebra from the M-5-brane}, Phys.Lett. B412 (1997) 265-273 (\href{http://arxiv.org/abs/hep-th/9708003}{arXiv:hep-th/9708003}) \end{itemize} Further detailed discussion along these lines producing also the [[type II supersymmetry algebras]] is in \begin{itemize}% \item Hanno Hammer, \emph{Topological Extensions of Noether Charge Algebras carried by D-p-branes}, Nucl.Phys. B521 (1998) 503-546 (\href{http://arxiv.org/abs/hep-th/9711009}{arXiv:hep-th/9711009}) \end{itemize} The full extension was named ``M-algebra'' in \begin{itemize}% \item [[Ergin Sezgin]], \emph{The M-Algebra}, Phys.Lett. B392 (1997) 323-331 (\href{http://arxiv.org/abs/hep-th/9609086}{arXiv:hep-th/9609086}) \end{itemize} In (\hyperlink{DAuriaFre82}{D'Auria-Fr\'e{} 82}) the motivation is from the formulation of the fields of [[11-dimensional supergravity]] as connections with values in the [[supergravity Lie 3-algebra]], see at \emph{[[D'Auria-Fré formulation of supergravity]]}. Realization of the M-theory super Lie algebra as the algebra of [[derivations]] of the [[supergravity Lie 3-algebra]] is in \begin{itemize}% \item [[Leonardo Castellani]], \emph{Lie derivatives along antisymmetric tensors, and the M-theory superalgebra}, J. Phys. Math. Volume 3 (2011), 1-7. (\href{http://arxiv.org/abs/hep-th/0508213}{arXiv:hep-th/0508213}, \href{http://projecteuclid.org/euclid.jpm/1359468398}{Euclid}) \end{itemize} with amplification in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The brane bouquet|Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields]]} (2013) \item [[nLab:Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Lie n-algebras of BPS charges]]} \end{itemize} Discussion of a formulation in terms of [[octonions]] (see also at \emph{[[division algebra and supersymmetry]]}) includes \begin{itemize}% \item A. Anastasiou, [[Leron Borsten]], [[Michael Duff]], L. J. Hughes, S. Nagy, \emph{An octonionic formulation of the M-theory algebra} (\href{http://arxiv.org/abs/1402.4649}{arXiv:1402.4649}) \end{itemize} Arguments that the charges of the M-theory super Lie algebra may be identified inside [[E11]] are given in \begin{itemize}% \item [[Peter West]], \emph{$E_{11}$, $SL(32)$ and Central Charges}, Phys.Lett.B575:333-342,2003 (\href{http://arxiv.org/abs/hep-th/0307098v2}{arXiv:hep-th/0307098v2}) \item [[Paul Cook]], around p. 75 of \emph{Connections between Kac-Moody algebras and M-theory} (\href{http://arxiv.org/abs/0711.3498}{arXiv:0711.3498}) \end{itemize} [[!redirects M-theory Lie algebra]] [[!redirects M-Lie algebra]] [[!redirects M-theory algebra]] [[!redirects M-theory supersymmetry Lie algebra]] [[!redirects M-theory supersymmetry super Lie algebra]] [[!redirects M-theory super Lie algebra extension]] [[!redirects M-theory super Lie algebra extensions]] [[!redirects DF-algebra]] [[!redirects DF-algebras]] [[!redirects D'Auiria-Fré algebra]] [[!redirects D'Auiria-Fré algebras]] [[!redirects D'Auiria-Fre algebra]] [[!redirects D'Auiria-Fre algebras]] \end{document}