\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{MO5} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{charge_anomaly_cancellation_and_duality_to_o4planes}{Charge, anomaly cancellation and duality to O4-planes}\dotfill \pageref*{charge_anomaly_cancellation_and_duality_to_o4planes} \linebreak \noindent\hyperlink{as_a_sector_of_heterotic_mtheory_on_adesingularities}{As a sector of heterotic M-theory on ADE-singularities}\dotfill \pageref*{as_a_sector_of_heterotic_mtheory_on_adesingularities} \linebreak \noindent\hyperlink{as_geometric_engineering_of___scfts}{As geometric engineering of $D=6$ $\mathcal{N} = (2,0)$ SCFTs}\dotfill \pageref*{as_geometric_engineering_of___scfts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{as_a_sector_of_the__in_heterotic_mtheory_at_adesingularities}{As a sector of the $-\tfrac{1}{2}M5$ in heterotic M-theory at ADE-singularities}\dotfill \pageref*{as_a_sector_of_the__in_heterotic_mtheory_at_adesingularities} \linebreak \noindent\hyperlink{relation_to_o4planes}{Relation to O4-planes}\dotfill \pageref*{relation_to_o4planes} \linebreak \noindent\hyperlink{geometric_engineering_of_orthogonal___scfts}{Geometric engineering of orthogonal $D=6$, $\mathcal{N}=(2,0)$ SCFTs}\dotfill \pageref*{geometric_engineering_of_orthogonal___scfts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{MO5} (\hyperlink{DasguptaMukhil95}{Dasgupta-Mukhil 95, Sec. 2FFurther}, \hyperlink{Witten95}{Witten 95, Sec. 3.3}) is one of the types of $\tfrac{1}{2}$ [[BPS state|BPS]] [[orientifold]] [[fixed loci]] in [[M-theory]]/on [[D=11 N=1 supergravity|D=11 N=1]] [[super-spacetime]]. Locally on [[super Minkowski spacetime]] it is the [[super-geometry|super]]-[[orientifold]] $\mathbb{R}^{10,1\vert \mathbf{32}} \sslash \mathbb{Z}^{\Gamma^{56789}}_2$ given by the global [[orbifold quotient]] by the [[group of order 2]] which is generated by the [[Clifford algebra]]-element $\Gamma_5 \Gamma_6 \Gamma_7 \Gamma_8 \Gamma_9 \in Pin^+(10,1)$ in the positive [[pin group]] (for precise details see \hyperlink{HSS18}{HSS 18, Lemma 4.12}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{charge_anomaly_cancellation_and_duality_to_o4planes}{}\subsubsection*{{Charge, anomaly cancellation and duality to O4-planes}}\label{charge_anomaly_cancellation_and_duality_to_o4planes} Under [[duality between M-theory and type IIA string theory]], for [[KK-compactification]] along a [[circle]]-[[fiber]] parallel to the MO5, a plain MO5 becomes the [[O4-plane]], specifically the $O^- 4$-plane, while an MO5 with an [[M5-brane]] on top of it becomes the $O^+ 4$-plane (\hyperlink{Gimon98}{Gimon 9, Sec. III8},\hyperlink{HananyKol00}{Hanany-Kol 00, Sec. 3.1}). Hence the spacetime [[dimensions]] of the MO5 is the same that of the [[black brane|black]] [[M5-brane]], but its charge as an [[O-plane]] is $- \tfrac{1}{2}$ that of a single [[M5-brane]] (\hyperlink{DasguptaMukhil95}{Dasgupta-Mukhil 95, Sec. 2}, \hyperlink{Witten95}{Witten 95, 3.3}, \hyperlink{Hori98}{Hori 98, 2.1}), so that am [[M-theory|M-theoretic]] lift of [[RR-field tadpole cancellation]] requires the presence of 16 [[M5-branes]] in an [[toroidal orbifold|toroidal]] MO5-type [[orientifold]] $\mathbb{T}^{\mathbf{5}_{sgn}} \!\sslash\! \mathbb{Z}_2$. \hypertarget{as_a_sector_of_heterotic_mtheory_on_adesingularities}{}\subsubsection*{{As a sector of heterotic M-theory on ADE-singularities}}\label{as_a_sector_of_heterotic_mtheory_on_adesingularities} By the classification of \href{M5-brane#MFF12}{MFF 12, Sec. 8.3}, the MO5-plane is \emph{not} in fact a $\tfrac{1}{2}$ [[BPS state|BPS]] solution of [[D=11 N=1 supergravity]]. But the [[brane intersection|intersection]] of an [[MK6]] with an [[MO9-plane]] is a $\tfrac{1}{4}$ [[BPS state|BPS]] solution to [[D=11 N=1 supergravity]]. \begin{quote}% graphics grabbed from \hyperlink{HSS18}{HSS18, Example 2.2.7} \end{quote} Thus, [[heterotic M-theory on ADE-orbifolds]] the MO5-plane becomes the [[fixed locus]] of the [[diagonal]] $\mathbb{Z}_2 \overset{ diag }{\hookrightarrow } \mathbb{Z}_2 \times G^{DE}$, hence the [[brane intersection|intersection]] of an [[MO9]] with an [[MK6]]${}_{DE}$ (\hyperlink{FLO99}{FLO 99, Sec. 4}), also called the $-\tfrac{1}{2}M5$, since under [[duality between M-theory and type IIA string theory]] this becomes the [[half NS5-brane]] of [[type I' string theory]]. \hypertarget{as_geometric_engineering_of___scfts}{}\subsubsection*{{As geometric engineering of $D=6$ $\mathcal{N} = (2,0)$ SCFTs}}\label{as_geometric_engineering_of___scfts} Coincident [[M5-branes]] on an [[MO5-plane]] are supposed to [[geometric engineering of QFTs|geometrically engineer]] [[D=6 N=(2,0) SCFTs]] with [[classification of simple Lie groups|D-series]] [[gauge groups]] (\hyperlink{AKY98}{AKY 98, Sec. IIB}). But if these are really $-\tfrac{1}{2} M5 = MK6 \cap MO9$-branes of [[heterotic M-theory on ADE-orbifolds]], then they will [[geometric engineering of QFTs|geometrically engineer]] [[D=6 N=(1,0) SCFTs]], instead, see \href{heterotic+M-theory+on+ADE-orbifolds#GeometricEngineeringOfDIs6NIs1SCFTs}{there}. \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The original articles are \begin{itemize}% \item Keshav Dasgupta, [[Sunil Mukhi]], \emph{Orbifolds of M-theory}, Nucl. Phys. B465 (1996) 399-412 (\href{https://arxiv.org/abs/hep-th/9512196}{arXiv:hep-th/9512196}) \item [[Edward Witten]], \emph{Five-branes And M-Theory On An Orbifold}, Nucl. Phys. B463:383-397, 1996 (\href{https://arxiv.org/abs/hep-th/9512219}{arXiv:hep-th/9512219}) \item [[Kentaro Hori]], \emph{Consistency Conditions for Fivebrane in M Theory on $\mathbb{R}^5/\mathbb{Z}_2$ Orbifold}, Nucl.Phys.B539:35-78, 1999 (\href{https://arxiv.org/abs/hep-th/9805141}{arXiv:hep-th/9805141}) \end{itemize} Classification view of [[rational equivariant homotopy theory|rational]] [[equivariant Cohomotopy]] of [[super-spacetime]]: \begin{itemize}% \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], Example 2.2.2 of: \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]}, CMP (2019) (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}, \href{http://link.springer.com/article/10.1007/s00220-019-03442-3}{doi:10.1007/s00220-019-03442-3}) \end{itemize} \hypertarget{as_a_sector_of_the__in_heterotic_mtheory_at_adesingularities}{}\subsubsection*{{As a sector of the $-\tfrac{1}{2}M5$ in heterotic M-theory at ADE-singularities}}\label{as_a_sector_of_the__in_heterotic_mtheory_at_adesingularities} Discussion in the more general context of [[heterotic M-theory on ADE-orbifolds]] is in \begin{itemize}% \item Michael Faux, [[Dieter Lüst]], [[Burt Ovrut]], Section 4 of \emph{Intersecting Orbifold Planes and Local Anomaly Cancellation in M-Theory}, Nucl. Phys. B554: 437-483, 1999 (\href{https://arxiv.org/abs/hep-th/9903028}{arXiv:hep-th/9903028}) \end{itemize} and in view of [[super-embedding formalism|super-embeddings]] of [[M5-branes]] in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], Section 4 of: \emph{[[schreiber:Super-exceptional embedding construction of the M5-brane|Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5]]} (\href{https://arxiv.org/abs/1908.00042}{arXiv:1908.00042}) \end{itemize} \hypertarget{relation_to_o4planes}{}\subsubsection*{{Relation to O4-planes}}\label{relation_to_o4planes} Relation of the MO5 to the [[O4-plane]] under [[duality between M-theory and type IIA string theory]]: \begin{itemize}% \item [[Kentaro Hori]], Section 3 of: \emph{Consistency Conditions for Fivebrane in M Theory on $\mathbb{R}^5/\mathbb{Z}_2$ Orbifold}, Nucl. Phys. B539:35-78, 1999 (\href{https://arxiv.org/abs/hep-th/9805141}{arXiv:hep-th/9805141}) \item [[Eric Gimon]], \emph{On the M-theory Interpretation of Orientifold Planes} (\href{https://arxiv.org/abs/hep-th/9806226}{arXiv:hep-th/9806226}, \href{http://inspirehep.net/record/472499}{spire:472499}) \item [[Amihay Hanany]], [[Barak Kol]], Section 3.1 in: \emph{On Orientifolds, Discrete Torsion, Branes and M Theory}, JHEP 0006 (2000) 013 (\href{https://arxiv.org/abs/hep-th/0003025}{arXiv:hep-th/0003025}) \item Yoonseok Hwang, Joonho Kim, Seok Kim, \emph{M5-branes, orientifolds, and S-duality}, J. High Energ. Phys. (2016) 2016: 148 (\href{https://arxiv.org/abs/1607.08557}{arXiv:1607.08557}) \end{itemize} \hypertarget{geometric_engineering_of_orthogonal___scfts}{}\subsubsection*{{Geometric engineering of orthogonal $D=6$, $\mathcal{N}=(2,0)$ SCFTs}}\label{geometric_engineering_of_orthogonal___scfts} As [[geometric engineering of QFTs|geometric engineering]] of [[D=6 N=(2,0) SCFTs]] with [[classification of simple Lie groups|D-series]] [[gauge groups]]: \begin{itemize}% \item Changhyun Ahn, Hoil Kim, Hyun Seok Yang, \emph{$SO(2N)$ $(0,2)$ SCFT and M Theory on $AdS_7 \times \mathbb{R}P^4$}, Phys.Rev. D59 (1999) 106002 (\href{https://arxiv.org/abs/hep-th/9808182}{arXiv:hep-th/9808182}) \end{itemize} [[!redirects MO5-plane]] \end{document}