\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Macdonald polynomial} \textbf{Macdonald polynomials} are a generalization of a [[Schur function]]s; they unify a theory of Hall-Littlewood and [[Jack polynomial]]s. They form a family of [[orthogonal polynomials]] which are [[symmetric functions]] in $x_1,\ldots,x_n$ with coefficients which are rational functions of two additional variables $q$ and $t$. Given a [[partition]] $\lambda$, one defines a shift operator $T_{q,x_i}$ which maps $f = f(x_1,\ldots, x_n)$ to $f(x_1,\ldots, x_{i-1}, q x_i, x_{i+1},\ldots,x_n)$ and the operators $D_r$, $r = 0, 1, \ldots, n$ via \begin{displaymath} D_r = t^{\frac{r(r-1)}{2}} \sum_{I\subset \{1,\ldots,n\}, |I| = r} \prod_{i\in I, j\notin I} \frac{t x_i-x_j}{x_i-x_j}\prod_{i\in I} T_{q, x_i}, \end{displaymath} and the corresponding generating series $D := \sum_{r=0}^n D_r u^r$. The \textbf{Macdonald polynomial} $P_\lambda(x;q,t)$ is an eigenfunction of $D$ with the eigenvalue \begin{displaymath} \prod_{i=1}^n (1 + u t^{n-i} q^{\lambda_i}) \end{displaymath} In the case $q = t$ we get the [[Schur function]] $P_\lambda(x; t,t) = s_\lambda(t)$. Similarly, shifted Macdonald polynomials generalize shifted Schur functions. \begin{itemize}% \item I. G. Macdonald, Publ. I.R.M.A. 372 (S-20), 131-171, 1988. \item I. G. Macdonald, \emph{Symmetric functions and Hall polynomials}, Oxford Math. Monographs, 2nd enlarged ed. 1995 \item wikipedia \href{http://en.wikipedia.org/wiki/Macdonald_polynomials}{Macdonald polynomial} \item A. M. Garsia, C. Procesi, \emph{On certain graded $S_n$-modules and the $q$-Kostka polynomials}, Adv. Math. \textbf{94} (1992) 82-138 \item A. Okounkov, \emph{(Shifted) Macdonald polynomials: q-integral representation and combinatorial formula}, Compositio Math. \textbf{112} (1998), 147--182. \href{http://www.ams.org/mathscinet-getitem?mr=1626029}{MR99h:05120}, \href{http://dx.doi.org/10.1023/A:1000436921311}{doi}, \emph{BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials}, Transform. Groups \textbf{3} (1998) 181--207, \href{http://www.ams.org/mathscinet-getitem?mr=1628453}{MR99h:33061}, \emph{Combinatorial formula for Macdonald polynomials and generic Macdonald polynomials}, Transform. Groups \textbf{8} (2003), no. 3, 293--305, \href{http://www.ams.org/mathscinet-getitem?mr=1996418}{MR2004e:05202}, \href{http://dx.doi.org/10.1007/s00031-003-0306-0}{doi} \item N. Bergeron, A. M. Garsia, \emph{On certain spaces of harmonic polynomials}, in: Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991), Contemp. Math. \textbf{138}, 51--86 (Amer. Math. Soc. 1992) \item A. Yu. Okounkov, \emph{A remark on the Fourier pairing and the binomial formula for the Macdonald polynomials}, Funktsional. Anal. i Prilozhen. 36 (2002), no. 2, 62--68, 96; translation in Funct. Anal. Appl. 36 (2002), no. 2, 134--139, \href{http://dx.doi.org/10.1023/A:1015670523770}{doi} \item G. Felder, L. Stevens, [[A. Varchenko]], \emph{Modular transformations of the elliptic hypergeometric functions, Macdonald polynomials, and the shift operator}, Moscow Math. J. \textbf{3}, n. 2 (2003), 457-473, \href{http://www.ams.org/distribution/mmj/vol3-2-2003/felder-etal.pdf}{pdf}, \href{http://lanl.arxiv.org/abs/math/0203049}{arXiv:math.QA/0203049}, \href{http://www.ams.org/mathscinet-getitem?mr=2025269}{MR2025269} \item Mark Haiman, \emph{Hilbert schemes, polygraphs and the Macdonald positivity conjecture}, J. Amer. Math. Soc. \textbf{14} (2001), no. 4, 941--1006, \href{http://www.ams.org/mathscinet-getitem?mr=1839919}{MR2002c:14008}, \href{http://dx.doi.org/10.1090/S0894-0347-01-00373-3}{doi}; \emph{Macdonald polynomials and geometry}, in: New perspectives in algebraic combinatorics (Berkeley, CA, 1996--97), 207--254, Math. Sci. Res. Inst. Publ. \textbf{38}, Cambridge Univ. Press 1999, \href{http://math.berkeley.edu/~mhaiman/ftp/nfact/msri.pdf}{pdf} \item M. Haiman, \emph{Cherednik algebras, Macdonald polynomials and combinatorics}, Proc. ICM, Madrid 2006, Vol. III, 843-872, \href{http://www.mathunion.org/ICM/ICM2006.3/Main/icm2006.3.0843.0872.ocr.djvu}{djvu scan}, \href{http://math.berkeley.edu/~mhaiman/ftp/icm-2006/comb-mac-chered.pdf}{author's pdf} \item M. Haiman, A. Woo, \emph{Geometry of $q$ and $q,t$-analogs in combinatorial enumeration}, in: Geometric combinatorics, 207--248, IAS/Park City Math. Ser. \textbf{13}, Amer. Math. Soc., Providence, RI, 2007, \href{http://math.berkeley.edu/~mhaiman/ftp/pcmi-2004/notes.pdf}{pdf}, \href{http://math.berkeley.edu/~mhaiman/ftp/pcmi-2004/notes.ps}{ps} \item A. M. Garsia, M. Haiman, \emph{A graded representation model for Macdonald's polynomials}, Proc. Nat. Acad. Sci. U.S.A. \textbf{90} (1993) 3607--3610, \href{http://www.ams.org/mathscinet-getitem?mr=1214091}{MR94b:05206}, \href{http://www.pnas.org/cgi/reprintframed/90/8/3607}{PNAS} \item A. M. Garsia, G. Tesler, \emph{Plethystic formulas for Macdonald $q, t$-Kostka coefficients}, Advances in Math. \textbf{123} (1996) 144--222, \href{http://www.ams.org/mathscinet-getitem?mr=1420484}{MR1420484}; A. M. Garsia, J. Remmel, \emph{Plethystic formulas and positivity for $q,t$-Kostka coefficients}, Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), 245--262, Progr. Math. \textbf{161}, Birkh\"a{}user 1998, \href{http://www.ams.org/mathscinet-getitem?mr=1627327}{MR99j:05189d} \item Friedrich Knop, \emph{Integrality of two variable Kostka functions}, J. Reine Angew. Math. 482 (1997), 177--189, \href{http://dx.doi.org/10.1515/crll.1997.482.177}{doi}, \href{http://www.ams.org/mathscinet-getitem?mr=1427661}{MR99j:05189c} \item Siddhartha Sahi, \emph{Interpolation, integrality, and a generalization of Macdonald's polynomials}, Internat. Math. Res. Notices 1996, no. 10, 457--471, \href{http://www.ams.org/mathscinet-getitem?mr=1399411}{MR99j:05189b}, \href{http://dx.doi.org/10.1155/S107379289600030X}{doi} \item Anatol N. Kirillov, Masatoshi Noumi, \emph{Affine Hecke algebras and raising operators for Macdonald polynomials}, Duke Math. J. \textbf{93} (1998), no. 1, 1--39, \href{http://www.ams.org/mathscinet-getitem?mr=1620075}{MR99j:05189a}, \href{http://dx.doi.org/10.1215/S0012-7094-98-09301-2}{doi} \item Anatol Kirillov Jr., \emph{Traces of intertwining operators and Macdonald's polynomials}, \href{http://arxiv.org/abs/q-alg/9503012}{q-alg/9503012} \item Anton Gerasimov, Dimitri Lebedev, Sergey Oblezin, \emph{Baxter operator formalism for Macdonald polynomials}. \href{http://arxiv.org/abs/1204.0926}{arxiv/1204.0926} \item Persi Diaconis, [[Arun Ram]], \emph{A probabilistic interpretation of the Macdonald polynomials}, \href{http://arxiv.org/abs/1007.4779}{arxiv/1007.4779} \item Anton Khoroshkin, \emph{Highest weight categories and Macdonald polynomials}, \href{http://arxiv.org/abs/1312.7053}{arxiv/1312.7053} \item E. Carlsson, E. Gorsky, A. Mellit, The $\mathbf{A}_{q,t}$ algebra and parabolic flag Hilbert schemes \href{https://arxiv.org/abs/1710.01407}{arxiv/1710.01407}; A. Garsia, A. Mellit, \emph{Five-term relation and Macdonald polynomials}, \href{https://arxiv.org/abs/1604.08655}{arxiv/1604.08655}; A. Mellit, \emph{Plethystic identities and mixed Hodge structures of character varieties}, \href{https://arxiv.org/abs/1603.00193}{arxiv/1603.00193} \end{itemize} category: algebra, combinatorics [[!redirects Macdonald polynomials]] \end{document}