\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Mal'cev variety} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{proofs_of_equivalence}{Proofs of equivalence}\dotfill \pageref*{proofs_of_equivalence} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_lattice_of_congruences_}{The lattice of congruences $Equiv(X)$}\dotfill \pageref*{the_lattice_of_congruences_} \linebreak \noindent\hyperlink{_is_a_modular_lattice}{$Equiv(X)$ is a modular lattice}\dotfill \pageref*{_is_a_modular_lattice} \linebreak \noindent\hyperlink{_is_a_desarguesian_lattice}{$Equiv(X)$ is a Desarguesian lattice}\dotfill \pageref*{_is_a_desarguesian_lattice} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{spelling}{Spelling}\dotfill \pageref*{spelling} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{Mal'cev operation} on a [[set]] $X$ is a ternary operation, a [[function]] \begin{displaymath} t:X\times X\times X\to X,\,\,\,(x,y,z)\mapsto t(x,y,z) , \end{displaymath} which satisfies the identities $t(x,x,z)=z$ and $t(x,z,z)=x$. An important motivating example is the operation $t$ of a [[heap]], for example the operation on a [[group]] defined by $t(x, y, z) = x y^{-1} z$. An [[algebraic theory]] $T$ is a \textbf{Mal'cev theory} when $T$ contains a Mal'cev operation. An algebraic theory is Mal'cev iff one of the following equivalent statements is true: \begin{enumerate}% \item in the category of $T$-algebras, every [[internal relation|internal]] [[reflexive relation]] is a [[congruence]]; \item in the category of $T$-algebras, the composite (as internal relations) of any two congruences is a congruence; \item in the category of $T$-algebras, the composition of equivalence relations is commutative. \end{enumerate} Statement (1) is one of the motivations to introduce the notion of [[Mal'cev category]]. A \textbf{Mal'cev variety} is the category of $T$-algebras for a Mal'cev theory $T$, thought of as a [[variety of algebras]]. \hypertarget{proofs_of_equivalence}{}\subsection*{{Proofs of equivalence}}\label{proofs_of_equivalence} If $R \hookrightarrow X \times Y$ is a binary relation on sets, write $R(x, y)$ to say that $(x, y) \in R$. If $X$, $Y$ are $T$-algebras, then $R$ is an internal relation in $T$-$Alg$ if the conditions $R(x_1, y_1) \wedge \ldots \wedge R(x_n, y_n)$, and $\theta(x_1, \ldots, x_n) = x$, $\theta(y_1, \ldots, y_n) = y$ for any $n$-ary operation $\theta$ of $T$, jointly imply $R(x, y)$. The set-theoretic composite of two internal relations in $T$-$Alg$ is also an internal relation, and the equality relation is always internal, so we may (and will) apply ordinary set-theoretic reasoning in our proofs below. \begin{uprop} If $T$ is a Mal'cev theory, then any internal reflexive relation in $T$-$Alg$ is an internal equivalence relation. \end{uprop} \begin{proof} If $t$ is a Mal'cev operation and $R$ is any internal reflexive relation on a $T$-algebra $X$, then $R$ is transitive because given $R(x, y) \wedge R(y, z)$, we infer $R(x, y) \wedge R(y, y) \wedge R(y, z)$, and this together with $t(x, y, y) = x$ and $t(y, y, z) = z$ gives $R(x, z)$ since $R$ is internal. Also $R$ is symmetric, because if $R(x, y)$, we infer $R(x, x) \wedge R(x, y) \wedge R(y, y)$, which together with $t(x, x, y) = y$ and $t(x, y, y) = x$ gives $R(y, x)$. \end{proof} \begin{uprop} If every internal reflexive relation is an internal equivalence relation, then the composite of any two internal equivalence relations is also an internal equivalence relation. \end{uprop} \begin{proof} The hypothesis is that internal reflexive relations and internal equivalence relations coincide. But (internal) reflexive relations are clearly closed under composition: $\Delta = \Delta \circ \Delta \subseteq R \circ S$. \end{proof} \begin{uprop} If internal equivalence relations are closed under composition, then composition of internal equivalence relations is commutative. \end{uprop} \begin{proof} If $R$ and $S$ are equivalence relations and so is $S \circ R$, then \begin{displaymath} S \circ R = (S \circ R)^{op} = R^{op} \circ S^{op} = R \circ S, \end{displaymath} as desired. \end{proof} \begin{uprop} If composition of internal equivalence relations in $T$-$Alg$ is commutative, then the theory $T$ has a Mal'cev operation $t$. \end{uprop} \begin{proof} According to the yoga of (Lawvere) [[Lawvere theory|algebraic theories]], $n$-ary operations are identified with elements of $F(n)$, the free $T$-algebra on $n$ generators (more precisely, the Lawvere theory is the category opposite to the category of finitely generated free $T$-algebras). Thus we must exhibit a suitable element $t$ of $F(3)$. Let $x, y, z$ be the generators of $F(3)$, and let $a, b$ be the generators of $F(2)$. Let $\phi$ be the unique algebra map $F(3) \to F(2)$ taking $x$ and $y$ to $a$ and $z$ to $b$, and let $\psi$ be the unique algebra map $F(3) \to F(2)$ taking $x$ to $a$ and $y$ and $z$ to $b$. An operation $t \in F(3)$ is Mal'cev precisely when \begin{displaymath} \phi(t) = b \qquad \psi(t) = a \end{displaymath} Let $R$ be the equivalence relation on $F(3)$ given by the kernel pair of $\phi$, and let $S$ be the kernel pair of $\psi$. Then $R(x, y)$ and $S(y, z)$, so $(S \circ R)(x, z)$. Then, since composition of equivalence relations is assumed commutative, $(R \circ S)(x, z)$. This means there exists $t$ such that $S(x, t)$ and $R(t, z)$, or that $\psi(x) = \psi(t)$ and $\phi(t) = \phi(z)$. This completes the proof. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The theory of [[group]]s, where $t(x, y, z) = x y^{-1} z$, is Mal'cev. \item The theory of [[Heyting algebra]]s, where \begin{displaymath} t(x, y, z) = ((z \Rightarrow y) \Rightarrow x) \wedge ((x \Rightarrow y) \Rightarrow z), \end{displaymath} is Mal'cev. \item If $T$ is Mal'cev, and if $T \to T'$ is a morphism of algebraic theories, then $T'$ is Mal'cev. From this point of view, the theory of groups is Mal'cev because the theory of heaps is Mal'cev, and the theory of Heyting algebras is Mal'cev because the theory of [[cartesian closed category|cartesian closed]] [[meet-semilattice]]s is Mal'cev. \end{itemize} See also [[Mal'cev category]]. \hypertarget{the_lattice_of_congruences_}{}\subsection*{{The lattice of congruences $Equiv(X)$}}\label{the_lattice_of_congruences_} \hypertarget{_is_a_modular_lattice}{}\subsubsection*{{$Equiv(X)$ is a modular lattice}}\label{_is_a_modular_lattice} In any [[finitely complete category]], the intersection of two congruences (equivalence relations) on an object $X$ is a congruence, so that the set of equivalence relations $Equiv(X)$ is a meet-semilattice. In a [[regular category]] such as a variety of algebras, where there is a sensible calculus of relations and relational composition, it is a simple matter to prove that if $Equiv(X)$ is closed under relational composition, then $R \circ S$ is the join $R \vee S$ in $Equiv(X)$. For, if $R, S \in Equiv(X)$, then \begin{displaymath} R = R \circ \Delta \subseteq R \circ S, \qquad S = \Delta \circ S \subseteq R \circ S \end{displaymath} while if $R, S \subseteq T$ in $Equiv(X)$, then \begin{displaymath} R \circ S \subseteq T \circ T \subseteq T. \end{displaymath} \begin{uprop} In a regular category, if $Equiv(X)$ is closed under relational composition (equivalently, if composition of equivalence relations is commutative), then $Equiv(X)$ is a [[modular lattice]]. \end{uprop} \begin{proof} The (poset-enriched) category of relations in a regular category is an [[allegory]], and hence satisfies Freyd's modular law \begin{displaymath} R \wedge (S \circ T) \subseteq S \circ ((S^{op} \circ R) \wedge T) \end{displaymath} whenever $T: X \to Y$, $S: Y \to Z$, $R: X \to Z$ are relations. As we have just seen, the hypothesis implies that joins in $Equiv(X)$ are given by composition (so $Equiv(X)$ is a lattice), and so for $R, S, T \in Equiv(X)$ we have \begin{displaymath} R \wedge (S \vee T) \subseteq S \vee ((S \vee R) \wedge T). \end{displaymath} Therefore, if $S \subseteq R$, we have both \begin{displaymath} R \wedge (S \vee T) \subseteq S \vee (R \wedge T) \end{displaymath} and also $S \vee (R \wedge T) \subseteq R \wedge (S \vee T)$. Thus $S \subseteq R$ implies $R \wedge (T \vee S) = (R \wedge T) \vee S$: the modular law is satisfied in $Equiv(X)$. \end{proof} \begin{ucor} If $T$ is a Mal'cev theory, then the lattice of congruences $Equiv(X)$ on any $T$-algebra $X$ is a modular lattice. \end{ucor} \hypertarget{_is_a_desarguesian_lattice}{}\subsubsection*{{$Equiv(X)$ is a Desarguesian lattice}}\label{_is_a_desarguesian_lattice} A similar argument shows that congruence lattices for $T$-algebras $X$, for $T$ a Mal'cev theory, satisfy the following property (stronger than the modular property): \begin{itemize}% \item [[Desarguesian axiom|Desarguesian property]]: if $R_i, S_i, T_i \in Equiv(X)$ for $i = 1, 2$, then\begin{displaymath} (R_1 \vee R_2) \wedge (S_1 \vee S_2)) \subseteq T_1 \vee T_2 \qquad implies \qquad (R_1 \vee S_1) \wedge (R_2 \vee S_2) \subseteq ((R_1 \vee T_1) \wedge (R_2 \vee T_2)) \vee ((S_1 \vee T_1) \wedge (S_2 \vee T_2)) \end{displaymath} \end{itemize} Freyd-Scedrov's [[Categories, Allegories]] (2.157, pp. 206-207) gives the following argument: given relations $R_1, S_1, T_1: X \to Y$, $R_2, S_2, T_2: Y \to Z$ between sets, it is ``easily verified'' that \begin{displaymath} R_2 R_1 \cap S_2 S_2 \subseteq T_2 T_1 \qquad implies \qquad S_1 R_{1}^{op} \cap S_{2}^{op} R_2 \subseteq (S_1 T_{1}^{op} \wedge S_{2}^{op} T_2)(T_1 R_{1}^{op} \cap T_{2}^{op}R_2) \end{displaymath} Then, under the assumption that equivalence relations internal to $T$-$Alg$ commute (so that the join of equivalence relations $R, S$ on $X$ is their relational composite $R S = R \circ S$), the Desarguesian axiom follows immediately. \hypertarget{references}{}\subsection*{{References}}\label{references} See the monograph [[Borceux-Bourn]]. \hypertarget{spelling}{}\subsection*{{Spelling}}\label{spelling} The original is `'; besides `Malcev', this has also been transliterated `Malcev' and `Maltsev'. [[!redirects Mal'cev varieties]] [[!redirects Mal'cev operation]] [[!redirects Mal'cev theory]] [[!redirects Mal'cev theories]] [[!redirects Mal'cev variety]] [[!redirects Mal'cev varieties]] [[!redirects Mal'cev operation]] [[!redirects Mal'cev theory]] [[!redirects Malʹcev variety]] [[!redirects Malʹcev varieties]] [[!redirects Malʹcev operation]] [[!redirects Malʹcev theory]] [[!redirects Malcev variety]] [[!redirects Malcev varieties]] [[!redirects Malcev operation]] [[!redirects Malcev theory]] [[!redirects Malcev theories]] [[!redirects Maltsev variety]] [[!redirects Maltsev varieties]] [[!redirects Maltsev operation]] [[!redirects Maltsev theory]] [[!redirects Maltsev theories]] [[!redirects Мальцев variety]] [[!redirects Мальцев varieties]] [[!redirects Мальцев operation]] [[!redirects Мальцев theory]] [[!redirects Мальцев theories]] \end{document}