\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Maurer-Cartan form} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{on_lie_groups}{On Lie groups}\dotfill \pageref*{on_lie_groups} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition_in_synthetic_differential_geometry}{Definition in synthetic differential geometry}\dotfill \pageref*{definition_in_synthetic_differential_geometry} \linebreak \noindent\hyperlink{analytic_definition}{Analytic definition}\dotfill \pageref*{analytic_definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{curvature}{Curvature}\dotfill \pageref*{curvature} \linebreak \noindent\hyperlink{pullback}{Pullback}\dotfill \pageref*{pullback} \linebreak \noindent\hyperlink{gauge_transformations}{Gauge transformations}\dotfill \pageref*{gauge_transformations} \linebreak \noindent\hyperlink{OnInftyLieGroup}{On smooth $\infty$-groups}\dotfill \pageref*{OnInftyLieGroup} \linebreak \noindent\hyperlink{OnCohesiveHomotopyTypes}{On cohesive and stable homotopy types}\dotfill \pageref*{OnCohesiveHomotopyTypes} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties_2}{Properties}\dotfill \pageref*{properties_2} \linebreak \noindent\hyperlink{relation_to_the_chern_character}{Relation to the Chern character}\dotfill \pageref*{relation_to_the_chern_character} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{on_lie_groups}{}\subsection*{{On Lie groups}}\label{on_lie_groups} \hypertarget{idea}{}\subsubsection*{{Idea}}\label{idea} For $G$ a [[Lie group]], the \emph{Maurer-Cartan form} on $G$ is a canonical [[Lie-algebra valued 1-form]] on $G$. One can generalize also to the Maurer-Cartan form on a principal bundle. \hypertarget{definition_in_synthetic_differential_geometry}{}\subsubsection*{{Definition in synthetic differential geometry}}\label{definition_in_synthetic_differential_geometry} Speaking in terms of [[synthetic differential geometry]] the Maurer-Cartan form has the following definition: any two points $x,y \in G$ are related by a unique group element $\theta(x,y)$ such that $y = x \cdot \theta(x,y)$. If $x$ and $y$ are [[infinitesimal space|infinitesimally close]] points, defining a [[tangent vector]], then $\theta(x,y)$ is an element of the [[Lie algebra]] of $G$. So $\theta$ restricted to infinitesimally close points is a $\mathfrak{g}$-valued 1-form, and this is the Maurer-Cartan form. \hypertarget{analytic_definition}{}\subsubsection*{{Analytic definition}}\label{analytic_definition} In terms of [[analysis]] there is a direct analogue of this definition: a [[tangent vector]] on $G$ at $g \in G$ may be identified with an equivalence class of [[smooth function]] $\gamma : [0,1] \to G$ with $\gamma(0) = g$. The tangent vectors through the origin $x = e$ are canonically identified with the [[Lie algebra]] of $G$. By left-translating a path through $g$ back to the origin $g^{-1}\gamma : [0,1] \to G \stackrel{g^{-1} \cdot(-)}{\to} G$ it represents a Lie algebra element. This map \begin{displaymath} \theta := g^{-1}_* : [\gamma] \mapsto [g^{-1} \gamma] \end{displaymath} of tangent vectors to Lie algebra elements is the Maurer-Cartan form. If we write $g : G \to G$ for the identity function on $G$, then $d g : T G \to T G$ is the identity function on the tangent vectors of $G$. With this the Maurer-Cartan form may be written \begin{displaymath} g^{-1}_* d g : T G \to T_e G = \mathfrak{g} \,. \end{displaymath} If $G$ is a [[matrix Lie group]], then $g^{-1}_*$ is literally just left-multiplication of matrices and therefore the Maurer-Cartan form is often written just \begin{displaymath} \theta = g^{-1} d g \,. \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{curvature}{}\subsubsection*{{Curvature}}\label{curvature} The Maurer-Cartan form is a Lie-algebra valued form with vanishing [[curvature]]. \begin{displaymath} d \theta + \frac{1}{2}[\theta \wedge \theta] = 0 \end{displaymath} This is known as the [[Maurer-Cartan equation]]. Synthetically this is just a restatement of the fact that for $x,y \in G$ there is a \emph{unique} group element such that $y = x \cdot g$: therefor for three points $x,y,z$ we have \begin{displaymath} \itexarray{ && y \\ & {}^{\mathllap{\theta}(x,y)}\nearrow && \searrow^{\mathrlap{\theta}(y,z)} \\ x &&\stackrel{\theta(x,z)}{\to}&& z } \end{displaymath} i.e. $\theta(x,y) \theta(y,z) = \theta(x,z)$. This is what analytically becomes the statement of vanishing curvature. \hypertarget{pullback}{}\subsubsection*{{Pullback}}\label{pullback} If $X$ is a [[smooth manifold]] and $h : X \to G$ a [[smooth function]] with values in $G$, we have the [[pullback form]] \begin{displaymath} h^* \theta \in \Omega^1(X,\mathfrak{g}) \end{displaymath} of the Maurer-Cartan form on $X$. Using the above notation, writing simply $h^{-1}$ for $h^{-1}_*$ this is \begin{displaymath} h^* \theta = h^{-1} d h \,. \end{displaymath} Now $d h : T X \to T G$ is no longer (necessarily) the identity map as $g$ was when we wrote $\theta = g^{-1} d g$ above, but the form of this equation shows why it can be useful to think of $\theta$ itself in terms of the identity map $d g : T G \to T G$. \hypertarget{gauge_transformations}{}\subsubsection*{{Gauge transformations}}\label{gauge_transformations} The Maurer-Cartan form crucially appears in the formula for the gauge transformation of [[Lie-algebra valued 1-form]]s. For $u : \mathbb{R} \to G$ a smooth function and $A \in \Omega^1(\mathbb{R}, \mathfrak{g})$ a Lie-algebra valued form, the condition that $u$ is \emph{flat} with respect to $u$ is that it satisfies the [[differential equation]] \begin{displaymath} d u = -(R_u)_* \circ A \end{displaymath} (where $R$ denotes the right multiplication action of $G$ on itself). This is such that if $G$ happens to be a [[matrix Lie group]] it is equivalent to \begin{displaymath} (d + A) u = 0 \,. \end{displaymath} We call the unique solution $u$ of this differential equation that satisfies $u(0) = e$ the [[parallel transport]] of $A$ and write it $u = P \exp(\int_0^{(-)} A)$. Now for $g : \mathbb{R} \to G$ a function, the \emph{gauge transformed} parallel transport is \begin{displaymath} g^{-1} P \exp(\int_0^{(-)} A) g \,. \end{displaymath} This solves a differential equation as above, but for a different 1-form $A'$. The relation is \begin{displaymath} A' = Ad_{g^{-1}} A + g^* \theta \end{displaymath} or equivalently, with adopted notation \begin{displaymath} A' = g^{-1}A g + g^{-1} d g \,. \end{displaymath} \hypertarget{OnInftyLieGroup}{}\subsection*{{On smooth $\infty$-groups}}\label{OnInftyLieGroup} The theory of [[Lie groups]] embeds into the more general context of [[smooth ∞-groupoid]]s. In this context the Maurer-Cartan form has an (even) more general abstract definition that does not even presuppose the notion of differential form as such: for every [[smooth ∞-group]] $G \in Smooth\infty Grpd$ with [[delooping]] $\mathbf{B}G$ there is canonically an [[smooth ∞-groupoid]] $\mathbf{\flat}_{dR} \mathbf{B}G$ as described . Morphisms $X\to \mathbf{\flat}_{dR}\mathbf{B}G$ correspond to flat $\mathfrak{g}$-valued differential forms on $G$. This fits into a double [[(∞,1)-pullback]] diagram \begin{displaymath} \itexarray{ G &\to& * \\ {}^{\mathllap{\theta}}\downarrow && \downarrow \\ \mathbf{\flat}_{dR} \mathbf{B}G &\to& \mathbf{\flat} \mathbf{B}G \\ \downarrow && \downarrow \\ * &\to& \mathbf{B}G } \,. \end{displaymath} The morphism \begin{displaymath} \theta : G \to \mathbf{\flat}_{dR}\mathbf{B}G \end{displaymath} in this diagram is the $\infty$-Maurer-Cartan form on $G$. For $G$ an ordinary Lie group, this reduces to the above definition. This statement and its proof is spelled out \href{smooth+infinity-groupoid+--+structures#CanonicalFormOnLieGroup}{here}. \hypertarget{OnCohesiveHomotopyTypes}{}\subsection*{{On cohesive and stable homotopy types}}\label{OnCohesiveHomotopyTypes} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} Therefore generally for $\mathbf{H}$ a [[cohesive (∞,1)-topos]] and $G \in \mathbf{H}$ an [[∞-group]] object, one may think of \begin{displaymath} \theta \coloneqq fib(\flat \to \mathbf{B}) \end{displaymath} as the Maurer-Cartan form on [[∞-group]] objects \begin{displaymath} \theta_G \;\colon\; G \stackrel{}{\longrightarrow} \flat_{dR}\mathbf{B}G \,. \end{displaymath} This is discussed at \emph{[[cohesive infinity-topos -- structures]]} in the section \emph{\href{cohesive+infinity-topos+--+structures#CurvatureCharacteristics}{Maurer-Cartan forms and curvature characteristics}}. This includes then for instance Maurer-Cartan forms in higher [[supergeometry]] as discussed at \emph{[[Super Gerbes]]}. \hypertarget{properties_2}{}\subsubsection*{{Properties}}\label{properties_2} \hypertarget{relation_to_the_chern_character}{}\paragraph*{{Relation to the Chern character}}\label{relation_to_the_chern_character} Given a [[stable homotopy type]] $\hat E$ in [[cohesion]], then the [[shape modality|shape]] of the Maurer-Cartan form plays the role of the \emph{[[Chern character]]} on $E \coloneqq \Pi(\hat E)$-cohomology. See at \emph{[[Chern character]]} for more on this, and see at \emph{[[differential cohomology diagram]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[invariant differential form]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The [[synthetic differential geometry|synthetic]] view on the Maurer-Cartan form is discussed in \begin{itemize}% \item [[Anders Kock]], \emph{Synthetic geometry of manifolds} (\href{http://home.imf.au.dk/kock/SGM-final.pdf}{pdf}) \end{itemize} The synthetic Maurer-Cartan form itself appears in example 3.7.2. The synthetic vanishing of its curvature is corollary 6.7.2. [[!redirects Maurer-Cartan forms]] \end{document}