\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Maxwell's equations} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{differential_geoemtry}{}\paragraph*{{Differential geoemtry}}\label{differential_geoemtry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{three_dimensional_formulation}{Three dimensional formulation}\dotfill \pageref*{three_dimensional_formulation} \linebreak \noindent\hyperlink{integral_formulation_in_vacuum_in_si_units}{Integral formulation in vacuum, in SI units}\dotfill \pageref*{integral_formulation_in_vacuum_in_si_units} \linebreak \noindent\hyperlink{differential_equations}{Differential equations}\dotfill \pageref*{differential_equations} \linebreak \noindent\hyperlink{equations_in_terms_of_faraday_tensor_}{Equations in terms of Faraday tensor $F$}\dotfill \pageref*{equations_in_terms_of_faraday_tensor_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[electromagnetism]], \emph{Maxwell's equations} are the [[equations of motion]] for the electromagnetic [[field strength]] [[electric current]] and [[magnetic current]]. \hypertarget{three_dimensional_formulation}{}\subsection*{{Three dimensional formulation}}\label{three_dimensional_formulation} $E$ is here the (vector of) strength of electric field and $B$ the strength of magnetic field; $Q$ is the charge and $j_{el}$ the density of the electrical current; $\epsilon_0$, $c$, $\mu_0$ are constants (electrical permeability, speed of the light, and magnetic permeability; all of/in vacuum: $\mu_0 \epsilon_0 = 1/c^2$). \hypertarget{integral_formulation_in_vacuum_in_si_units}{}\subsubsection*{{Integral formulation in vacuum, in SI units}}\label{integral_formulation_in_vacuum_in_si_units} \textbf{Gauss' law for electric fields} \begin{displaymath} \int_{\partial V} E\cdot d A = \frac{Q}{\epsilon_0} \end{displaymath} where $\partial V$ is a closed surface which is a boundary of a 3d domain $V$ (physicists say ``volume'') and $Q = \int_V \rho d V$ the charge in the domain $V$; $\cdot$ denotes the scalar (dot) product. Surface element $d A$ is $\vec{n} d |A|$, i.e. it is the scalar surface measure times the unit vector of normal outwards. \textbf{No magnetic monopoles} (Gauss' law for magnetic fields) \begin{displaymath} \int_\Sigma B\cdot d A = 0 \end{displaymath} where $\Sigma$ is any closed surface. \textbf{Faraday's law of induction} \begin{displaymath} \oint_{\partial \Sigma} E\cdot d s = - \frac{d}{d t} \int_\Sigma B\cdot d A \end{displaymath} The line element $d s$ is the differential (or 1-d measure on the boundary) of the length times the unit vector in counter-circle direction (or parametrize the curve with $s$ being a vector in 3d space, express magnetic field in the same parameter and calculate the integral as a function of parameter: $\cdot$ is a scalar (``dot'') product). \textbf{Amp\`e{}re-Maxwell law} (or generalized Amp\`e{}re's law; Maxwell added the second term involving derivative of the flux of electric field to the Amp\`e{}re's law which described the magnetic field due electric current). \begin{displaymath} \oint_{\partial \Sigma} B\cdot d s = \mu_0 I + \mu_0 \epsilon_0 \frac{d}{d t} \int_\Sigma E\cdot d A \end{displaymath} where $\Sigma$ is a surface and $\partial \Sigma$ its boundary; $I$ is the total current through $\Sigma$ (integral of the component of $j_{el}$ normal to the surface). \hypertarget{differential_equations}{}\subsubsection*{{Differential equations}}\label{differential_equations} Here we put units with $c = 1$. By $\rho$ we denote the density of the charge. \begin{itemize}% \item \textbf{no magnetic charges} (magnetic Gauss law): $div B = 0$ \item \textbf{Faraday's law}: $\frac{d}{d t} B + rot E = 0$ \item \textbf{Gauss' law}: $div D = \rho$ \item \textbf{generalized Amp\`e{}re's law} $- \frac{d}{d t} D + rot H = j_{el}$ \end{itemize} \hypertarget{equations_in_terms_of_faraday_tensor_}{}\subsection*{{Equations in terms of Faraday tensor $F$}}\label{equations_in_terms_of_faraday_tensor_} This is adapted from \emph{\href{http://ncatlab.org/nlab/show/electromagnetic+field#MaxwellEquations}{electromagnetic field -- Maxwell's equations}}. In modern language, the insight of (\hyperlink{Maxwell}{Maxwell, 1865}) is that locally, when physical [[spacetime]] is well approximated by a patch of its tangent space, i.e. by a patch of 4-dimensional [[Minkowski space]] $U \subset (\mathbb{R}^4, g = diag(-1,1,1,1))$, the electric field $\vec E = \left[ \itexarray{E_1 \\ E_2 \\ E_3} \right]$ and magnetic field $\vec B = \left[ \itexarray{B_1 \\ B_2 \\ B_3} \right]$ combine into a differential [[differential form|2-form]] \begin{displaymath} \begin{aligned} F & := E \wedge d t + B \\ &:= E_1 d x^1 \wedge d t + E_2 d x^2 \wedge d t + E_3 d x^3 \wedge d t \\ & + B_1 d x^2 \wedge d x^3 + B_2 d x^3 \wedge d x^1 + B_3 d x^1 \wedge d x^2 \end{aligned} \end{displaymath} in $\Omega^2(U)$ and the [[electric charge]] density and current density combine to a differential 3-form \begin{displaymath} \begin{aligned} j_{el} &:= j\wedge dt - \rho d x^1 \wedge d x^2 \wedge d x^3 \\ & := j_1 d x^2 \wedge d x^3 \wedge d t + j_2 d x^3 \wedge d x^1 \wedge d t + j_3 d x^1 \wedge d x^2 \wedge d t - \rho \; d x^1 \wedge d x^2 \wedge d x^3 \end{aligned} \end{displaymath} in $\Omega^3(U)$ such that the following two equations of differential forms are satisfied \begin{displaymath} \begin{aligned} d F = 0 \\ d \star F = j_{el} \end{aligned} \,, \end{displaymath} where $d$ is the de Rham differential operator and $\star$ the [[Hodge star]] operator. If we decompose $\star F$ into its components as before as \begin{displaymath} \begin{aligned} \star F &= -D + H\wedge dt \\ &= -D_1 \; d x^2 \wedge d x^3 -D_2 \; d x^3 \wedge d x^1 -D_3 \; d x^1 \wedge d x^2 \\ & + H_1 \; d x^1 \wedge d t + H_2 \; d x^2 \wedge d t + H_3 \; d x^3 \wedge d t \end{aligned} \end{displaymath} then in terms of these components the field equations -- called \textbf{Maxwell's equations} -- read as follows. $d F = 0$ gives the magnetic Gauss law and Faraday's law $d \star F = 0$ gives Gauss's law and Amp\`e{}re-Maxwell law \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hodge-Maxwell theorem]] \item [[Kirchhoff's laws]] \item [[Yang-Mills equations]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} [[Maxwell's equations]] originate in \begin{itemize}% \item [[James Clerk Maxwell]], \emph{\href{http://en.wikipedia.org/wiki/A_Dynamical_Theory_of_the_Electromagnetic_Field}{A Dynamical Theory of the Electromagnetic Field},} Philosophical Transactions of the Royal Society of London 155, 459--512 (1865). \end{itemize} Discussion in terms of [[differential forms]] is for instance in \begin{itemize}% \item [[Theodore Frankel]], \emph{Maxwell's equations}, The American Mathematical Monthly, Vol 81, No 4 (1974) (\href{http://ocw.nctu.edu.tw/course/vanalysis/maxwell_amm.pdf}{pdf}, \href{http://links.jstor.org/sici?sici=0002-9890%28197404%2981%3A4%3C343%3AME%3E2.0.CO%3B2-D}{JSTOR}) \item [[Theodore Frankel]], section 3.5 in \emph{[[The Geometry of Physics - An Introduction]]} \item Gregory L. Naber, \emph{Topology, geometry and gauge fields}, Appl. Math. Sciences vol. \textbf{141}, Springer 2000 \end{itemize} Some history and reflection is in \begin{itemize}% \item [[Freeman Dyson]], \emph{Why is Maxwell’s Theory so hard to understand?}, Proceedings of \href{https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4446147}{The Second European Conference on Antennas and Propagation, EuCAP 2007} (\href{https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4446147}{doi: 10.1049/ic.2007.1146}) \end{itemize} [[!redirects Maxwell equation]] [[!redirects Maxwell's equation]] [[!redirects Maxwell equations]] [[!redirects Maxwell's equations]] \end{document}