\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Mayer-Vietoris sequence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{ideas}{Ideas}\dotfill \pageref*{ideas} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{GeneralProperties}{General}\dotfill \pageref*{GeneralProperties} \linebreak \noindent\hyperlink{PresentationByFibrantObjects}{Presentation by fibrant objects}\dotfill \pageref*{PresentationByFibrantObjects} \linebreak \noindent\hyperlink{OverAGroupObject}{Over an $\infty$-group}\dotfill \pageref*{OverAGroupObject} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{CohomologyOfACover}{(Co)Homology of a cover}\dotfill \pageref*{CohomologyOfACover} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{ideas}{}\subsection*{{Ideas}}\label{ideas} \emph{Mayer-Vietoris sequence} is the term for the [[fiber sequence]] -- or often for the corresponding [[long exact sequence of homotopy groups]] -- induced from an [[(∞,1)-pullback]] (or for a [[homotopy pullback]] presenting it). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{C}$ be an [[(∞,1)-category]] with [[finite (∞,1)-limits]] and let $X, Y, B$ be [[pointed objects]] and \begin{displaymath} f : X \to B \end{displaymath} and \begin{displaymath} g : Y \to B \end{displaymath} be any two [[morphisms]] with common [[codomain]] preserving the base points. Let $X \times_B Y$ be the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ X \times_B Y &\to& Y \\ \downarrow &\swArrow_\simeq& \downarrow^{\mathrlap{g}} \\ X &\stackrel{f}{\to}& B } \,. \end{displaymath} The corresponding \textbf{Mayer-Vietoris sequence} is the [[fiber sequence]] of the induced morphism $X \times_B Y \to X \times Y$. Often the term is used (only) for the corresponding [[long exact sequence of homotopy groups]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{GeneralProperties}{}\subsubsection*{{General}}\label{GeneralProperties} \begin{prop} \label{SequenceFromDiagonal}\hypertarget{SequenceFromDiagonal}{} Let $\mathcal{C}$ be a [[presentable (∞,1)-category]]. Then $X \times_B Y$, which by definition sits in \begin{displaymath} \itexarray{ X \times_B Y &\to& Y \\ \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{g}} \\ X &\stackrel{f}{\to}& B } \end{displaymath} is equivalently also the following [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ X \times_B Y &\to& B \\ \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\Delta_B}} \\ X \times Y &\stackrel{(f,g)}{\to}& B \times B } \,, \end{displaymath} where the right vertical morphism is the [[diagonal]]. Moreover, the [[homotopy fiber]] of $X \times_B Y \to X \times Y$ is the [[loop space object]] $\Omega B$. \end{prop} See also at \emph{[[homotopy pullback]]} \href{homotopy+pullback#HomotopyPullbackByFactorizationLemma}{this corollary}. \begin{proof} The first statement one checks for instance by choosing a presentation by a [[combinatorial model category]] and then proceeding as below in the discussion \emph{\hyperlink{PresentationByFibrantObjects}{Presentation by fibrant objects}}. Then by the [[pasting law]] for $(\infty,1)$-pullbacks it follows that with the left square in \begin{displaymath} \itexarray{ \Omega B &\to& X \times_B Y &\to & B \\ \downarrow &\swArrow_{\simeq}& \downarrow &\swArrow_{\simeq}& \downarrow \\ * &\to& X \times Y &\stackrel{(f,g)}{\to}& B \times B } \end{displaymath} an $(\infty,1)$-pullback, so is the total outer rectangle. But again by the first statement, this is equivalent to the $(\infty,1)$-pullback \begin{displaymath} \itexarray{ \Omega B &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow \\ * &\to& B } \,, \end{displaymath} which is the defining pullback for the [[loop space object]]. \end{proof} Therefore the Mayer-Vietoris [[homotopy fiber sequence]] is of the form \begin{displaymath} \Omega B \to X \times_B Y \to X \times Y \,. \end{displaymath} For $\mathcal{C} =$ [[∞Grpd]] $\simeq L_{whe}$ [[Top]], this point of view is amplified in (\hyperlink{DyerRoitberg80}{Dyer-Roitberg 80}). \begin{cor} \label{LongExactSequenceOfHomotopyGroups}\hypertarget{LongExactSequenceOfHomotopyGroups}{} The corresponding [[long exact sequence of homotopy groups]] is of the form \begin{displaymath} \cdots \to \pi_{n+1} B \to \pi_n X \times_B Y \stackrel{(f_*, g_*)}{\to} \pi_n X \oplus \pi_n Y \stackrel{f_* - g_*}{\to} \pi_n B \to \cdots \end{displaymath} \begin{displaymath} \cdots \to \pi_2 B \to \pi_1 X \times_B Y \stackrel{(f_+, g_*)}{\to} \pi_1 X \times \pi_1 Y \stackrel{f_* \cdot g_*^{-1}}{\to} \pi_1 B \to \pi_0 (X \times_B Y) \to \pi_0 (X \times Y) \,. \end{displaymath} \end{cor} This is what has historically been the definition of Mayer-Vietories sequences (\hyperlink{EckmannHilton}{Eckmann-Hilton 64}). \hypertarget{PresentationByFibrantObjects}{}\subsubsection*{{Presentation by fibrant objects}}\label{PresentationByFibrantObjects} Suppose that the [[(∞,1)-category]] $\mathcal{C}$ is [[simplicial localization|presented]] by a [[category of fibrant objects]] $C$ (for instance the [[subcategory]] on the fibrant objects of a [[model category]]). Then the $(\infty,1)$-pullback $X \times_B Y$ is presented by a [[homotopy pullback]], and by the [[factorization lemma]], this is given by the ordinary [[limit]] \begin{displaymath} \itexarray{ X \times^h_B Y &\to& &\to& Y \\ \downarrow && && \downarrow^{\mathrlap{g}} \\ && B^I &\to& B \\ \downarrow && \downarrow \\ X &\stackrel{f}{\to}& B } \,, \end{displaymath} where $B \stackrel{\simeq}{\to} B^I \to B \times B$ is a [[path object]] for $B$. This limit coincides, up to [[isomorphism]], with the [[pullback]] \begin{displaymath} \itexarray{ X \times_B^h Y &\to& B^I \\ \downarrow && \downarrow \\ X \times Y &\stackrel{(f,g)}{\to}& B \times B } \,. \end{displaymath} This implies in particular that the [[homotopy fiber]] of $X \times_B^h Y \to X \times Y$ is the [[loop space object]] $\Omega B$, being the [[fiber]] of the [[path space object]] projection. \hypertarget{OverAGroupObject}{}\subsubsection*{{Over an $\infty$-group}}\label{OverAGroupObject} We consider now the case where $B$ carries the structure of an [[∞-group]] (or just a grouplike [[H-space]] object) in a [[presentable (∞,1)-category]] or [[locally Cartesian closed (∞,1)-category]] $\mathcal{C}$. In this case (as discussed in a moment), we have an [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ B &\to& * \\ \downarrow^{\mathrlap{\Delta_B}} &\swArrow_{\simeq}& \downarrow^{\mathrlap{e}} \\ B \times B &\stackrel{(-)\cdot (-)^{-1}}{\to}& B } \,, \end{displaymath} where the bottom horizontal morphism is the composite \begin{displaymath} (-)\cdot (-)^{-1} : B \times B \stackrel{(id, (-)^{-1})}{\to} B \times B \stackrel{\cdot}{\to} B \end{displaymath} of a morphism that sends the second argument to its inverse with the group composition operation. It then follows by the [[pasting law]] and prop. \ref{SequenceFromDiagonal} that in this case the morphism $X \times_B Y \to X \times Y$ in the Mayer-Vietoris sequence is itself the homotopy fiber of $X \times Y \stackrel{f \cdot g^{-1}}{\longrightarrow} B$, hence that we have a long homotopy fiber sequence of the form \begin{displaymath} \Omega B \longrightarrow X \times_B Y \longrightarrow X \times Y \stackrel{f \cdot g^{-1}}{\longrightarrow} B \,. \end{displaymath} First consider two more concrete special cases. \begin{example} \label{}\hypertarget{}{} Let $S$ be a small [[site]] and let $\mathcal{C} = Sh_{(\infty,1)}(S)$ be the [[(∞,1)-category of (∞,1)-sheaves]] on $S$. This is [[presentable (∞,1)-category|presented]] by the projective [[model structure on simplicial presheaves]] \begin{displaymath} \mathcal{C} \simeq ([S^{op}, sSet]_{proj, loc})^\circ \,. \end{displaymath} As discussed there, the [[Dold-Kan correspondence]] prolongs to a [[Quillen adjunction]] on [[presheaves]] whose [[right adjoint]] is \begin{displaymath} \Xi : [S^{op}, Ch_{\bullet \leq 0}(Ab)]_{proj} \to [S^{op}, sAb]_{proj} \to [S^{op}, sSet]_{proj} \,. \end{displaymath} Let then $B \in \mathcal{C}$ be an object with a presentation in $[S^{op}, sSet]$ in the image of this $\Xi$. We write $B$ also for this presentation, and hence $B = \Xi(\tilde B)$ for some presheaf of chain complexes $\tilde B$. We claim now that such $B$ satisfies the above assumption. To see this, first notice that the evident morphism $- : \tilde B \times \tilde B \to \tilde B$ is degreewise an [[epimorphism]], hence it is a fibration in $[S^{op}, Ch_{\bullet \geq 0}(Ab)]_{proj}$, and since $\Xi$ is [[Quillen adjunction|right Quillen]], so is the corresponding morphism $- : B \times B \to B$ in $[S^{op}, sSet]_{proj}$. Therefore the ordinary pullback of presheaves of chain complexes \begin{displaymath} \itexarray{ \tilde B &\to& * \\ \downarrow^{\mathrlap{\Delta_{\tilde B}}} && \downarrow^{\mathrlap{0}} \\ \tilde B \times \tilde B &\stackrel{-}{\to}& \tilde B } \end{displaymath} is a [[homotopy pullback]] in $[S^{op}, Ch_{\bullet \geq 0}(Ab)]_{proj}$, as is the ordinary pullback of simplicial presheaves \begin{displaymath} \itexarray{ B &\to& * \\ \downarrow^{\mathrlap{\Delta_B}} && \downarrow^{\mathrlap{0}} \\ B \times B &\stackrel{-}{\to}& B } \end{displaymath} in $[S^{op}, sSet]_{proj}$. Since [[∞-stackification]] preserves [[finite (∞,1)-limits]], this presents an [[(∞,1)-pullback]] also in $\mathcal{C}$. \end{example} \begin{example} \label{SimplicialGroupObjectAsBase}\hypertarget{SimplicialGroupObjectAsBase}{} Let $\mathcal{C}$ be an [[(∞,1)-topos]] with a 1-[[site]] $S$ of definition (a [[n-localic (∞,1)-topos|1-localic (∞,1)-topos]]). Then (as discussed there) every [[∞-group]] object in $\mathcal{C}$ has a presentation by a presheaf of [[simplicial groups]] \begin{displaymath} B \in [S^{op}, sGrp]_{proj} \to [S^{op}, sSet]_{proj} \,. \end{displaymath} We claim that the canonical morphism $- : B \times B \to B$ is objectwise a [[Kan fibration]] and hence a fibration in the projective [[model structure on simplicial presheaves]]. Let $U \in S$ be any test object. A diagram \begin{displaymath} \itexarray{ \Lambda[k]^i &\stackrel{(ha, hb)}{\to}& B(U) \times B(U) \\ \downarrow^{\mathrlap{j}} && \downarrow \\ \Delta[k] &\stackrel{\sigma}{\to}& B(U) } \end{displaymath} corresponds to a $k$-cell $\sigma \in B(U)$ together with a choice of decomposition of the $i$th [[horn]] $j^* \sigma$ as a difference \begin{displaymath} (j^* \sigma)_l = ha_l \cdot hb_l^{-1} \,. \end{displaymath} Since $B(U)$ itself is a [[Kan complex]] (being a [[simplicial group]], as discussed there) there is a filler $b \colon \Delta[k] \to B(U)$ of the [[horn]] $hb \colon \Lambda[k]^i \to B(U)$. Define then \begin{displaymath} a \coloneqq \sigma \cdot b \,. \end{displaymath} Since all the face maps are group homomorphisms, this is indeed a filler of $ha$: \begin{displaymath} \begin{aligned} \delta_l(a) & = \delta_l(\sigma \cdot b) \\ & = \delta_l(\sigma) \cdot \delta_l(b) \\ & = \delta_l(\sigma) \cdot hb_l \\ & = ha_l \end{aligned} \,. \end{displaymath} Moreover, by construction, $(a,b)$ is a filler in \begin{displaymath} \itexarray{ \Lambda[k]^i &\stackrel{(ha, hb)}{\to}& B(U) \times B(U) \\ \downarrow^{\mathrlap{i}} &{}^{(a,b)}\nearrow& \downarrow \\ \Delta[k] &\stackrel{\sigma}{\to}& B(U) } \,. \end{displaymath} Since therefore $- \colon B \times B \to B$ is a projective fibration, it follows as before that the ordinary pullback \begin{displaymath} \itexarray{ B &\to& * \\ \downarrow^{\mathrlap{\Delta_B}} && \downarrow^{e} \\ B \times B &\stackrel{-}{\to}& B } \end{displaymath} is a [[homotopy pullback]]. \end{example} \begin{prop} \label{SequenceOverGroupObjectIn1LocalicSituation}\hypertarget{SequenceOverGroupObjectIn1LocalicSituation}{} For $B$ an [[∞-group]] object as above, the [[(∞,1)-pullback]] $X \times_B Y$ is equivalently given by the $(\infty,1)$-pullback \begin{displaymath} \itexarray{ X \times_B Y &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{0}} \\ X \times Y &\stackrel{f \cdot g^{-1}}{\to}& B } \,. \end{displaymath} \end{prop} \begin{proof} By prop. \ref{SequenceFromDiagonal} the object $X \times_B Y$ is the $(\infty,1)$-pullback in \begin{displaymath} \itexarray{ X \times_B Y &\to& B \\ \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\Delta_B}} \\ X \times Y &\stackrel{(f,g)}{\to}& B \times B } \,. \end{displaymath} By the [[pasting law]] this is equivalently given by the composite pullback of \begin{displaymath} \itexarray{ X \times_B Y &\to& B &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow^{\mathrlap{\Delta_B}} &\swArrow_{\simeq}& \downarrow^{\mathrlap{0}} \\ X \times Y &\stackrel{(f,g)}{\to}& B \times B &\stackrel{-}{\to}& B } \,. \end{displaymath} Here the composite bottom morphism is $(f - g)$. \end{proof} Summing this up: \begin{prop} \label{}\hypertarget{}{} For $\mathbf{H}$ an [[(∞,1)-sheaf]] [[(∞,1)-topos]], $B$ an [[∞-group]]-object in $\mathbf{H}$ and $f\colon X \to B$ and $g \colon Y\to B$ two morphisms, then there is a long [[homotopy fiber sequence]] of the form \begin{displaymath} \Omega B \longrightarrow X \times_B Y \longrightarrow X \times Y \stackrel{f \cdot g^{-1}}{\longrightarrow} B \,. \end{displaymath} \end{prop} \begin{proof} For $\mathcal{C}$ an [[(∞,1)-site]] of definition, there is a [[reflective sub-(infinity,1)-category|reflection]] \begin{displaymath} \mathbf{H} \stackrel{\longleftarrow}{\hookrightarrow} [C^{op},\infty Grpd] \end{displaymath} of $\mathbf{H}$ into an [[(∞,1)-category of (∞,1)-presheaves]]. By prop. \ref{SequenceOverGroupObjectIn1LocalicSituation} the statement holds in $[C^{op},\infty Grpd]$. Since embedding and reflection both preserve [[finite (∞,1)-limits]], it hence also holds in $\mathbf{H}$. \end{proof} Still more generally and more simply: \begin{prop} \label{HTTArgumentForPullback}\hypertarget{HTTArgumentForPullback}{} Let $\mathcal{C}$ be a [[locally Cartesian closed (∞,1)-category]]. Let $G$ be an [[∞-group]] object (or just a grouplike [[H-space]]-object). Then for $\phi \colon D \longrightarrow G$ any morphism we have a [[homotopy pullback]] square of the form \begin{displaymath} \itexarray{ G \times D &\longrightarrow& D \\ \downarrow && \downarrow^{\mathrlap{\phi}} \\ G \times G &\stackrel{(-)\cdot (-)^{-1}}{\longrightarrow}& G } \,. \end{displaymath} \end{prop} (\href{http://nforum.mathforge.org/discussion/6403/generality-of-mayervietoris-in-an-infinitytopos-/?Focus=51417#Comment_51417}{nForum discussion}) \begin{proof} By \href{locally+cartesian+closed+infinity,1-category#InternalLogic}{this discussion} we may use [[homotopy type theory]] reasoning. Starting out with the discussion at \emph{\href{homotopy+pullback#InHomotopyTypeTheory}{homotopy pullback -- In homotopy type theory}} we obtain \begin{displaymath} \begin{aligned} D\times_G (G\times G) &= \sum_{d:D} \sum_{g_1:G} \sum_{g_2:G} (g_1\cdot g_2^{-1} = \phi(d)) \\ &= \sum_{d:D} \sum_{g_1:G} \sum_{g_2:G} (g_1 = \phi(d)\cdot g_2) \\ &= \sum_{d:D} \sum_{g_2:G} \sum_{g_1:G} (g_1 = \phi(d)\cdot g_2) \\ &= \sum_{d:D} \sum_{g_2:G} \mathbf{1}\\ &= D\times G \end{aligned} \,, \end{displaymath} where the second but last step consists of observing a contractible based [[path space object]] (see the discussion at [[factorization lemma]]). \end{proof} \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{C}$ be a [[locally Cartesian closed (∞,1)-category]]. Let $G$ be an [[∞-group]] object (or just a grouplike [[H-space]]-object). Then for $f \colon X \to G$ and $g \colon Y \to G$ two morphisms, there is a Mayer-Vietoris-type [[homotopy fiber sequence]] \begin{displaymath} \cdots \to \Omega G \longrightarrow X \times_G Y \longrightarrow X \times Y \stackrel{f \cdot (g^{-1})}{\longrightarrow} G \,. \end{displaymath} \end{prop} \begin{proof} Use prop. \ref{HTTArgumentForPullback} with $\phi$ being the canonical point, i.e. the inclusion $e \colon \ast \to G$ of [[generalized the|the]] neutral element to find the homotopy pullback \begin{displaymath} \itexarray{ G &\longrightarrow& \ast \\ \downarrow^{\mathrlap{\Delta}} && \downarrow^{\mathrlap{e}} \\ G \times G &\stackrel{(-)\cdot (-)^{-1}}{\longrightarrow}& G } \,. \end{displaymath} Then use the [[pasting law]] as above. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{CohomologyOfACover}{}\subsubsection*{{(Co)Homology of a cover}}\label{CohomologyOfACover} A special case of the general Mayer-Vietoris sequence, corollary \ref{LongExactSequenceOfHomotopyGroups} -- which historically was the first case considered -- applies to the [[cohomology]]/[[homology]] of a [[topological space]] $X$ equipped with an [[open cover]] $\{U_1, U_2 \to X\}$. Being a [[cover]] means (see [[effective epimorphism in an (∞,1)-category]]) that there is a [[homotopy pushout]] [[diagram]] of the form \begin{displaymath} \itexarray{ U \cap V &\hookrightarrow& U \\ \downarrow && \downarrow \\ V &\to& X } \end{displaymath} in the [[(∞,1)-topos]] $\mathbf{H} =$ [[∞Grpd]]/[[Top]]. When this is [[presentable (∞,1)-category|presented]] by the standard [[model structure on simplicial sets]] or in terms of [[CW-complex]]es by the [[model structure on topological spaces]], it is given by an ordinary [[pushout]]. Let then $A \in \infty Grpd \simeq Top$ be some coefficient object, for instance an [[Eilenberg-MacLane object]] $\mathbf{B}^n G$ ([[Eilenberg-MacLane space]] $\cdots \simeq K(G,n)$) for the definition of ordinary [[singular cohomology]] with coefficients in an [[abelian group]] $G$. Then applying the [[derived hom space]] functor $\mathbf{H}(-, A) : \mathbf{H}^{op} \to \infty Grpd$ yields the [[(∞,1)-pullback]] [[diagram]] \begin{displaymath} \itexarray{ \mathbf{H}(X, A) &\to& \mathbf{H}(U,A) \\ \downarrow && \downarrow \\ \mathbf{H}(V,A) &\to& \mathbf{H}(U \cap V, A) } \end{displaymath} to which we can apply the homotopical Mayer-Vietoris sequence. Notice that (as discussed in detail at [[cohomology]]) the [[homotopy groups]] of the [[∞-groupoid]] $\mathbf{H}(X,\mathbf{B}^n G)$ are the [[cohomology groups]] of $X$ with coefficients in $G$ \begin{displaymath} \pi_k \mathbf{H}(X, \mathbf{B}^n G) \simeq H^{n-k}(X, G) \,. \end{displaymath} By the above \href{GeneralProperties}{general properties} the above homotopy pullback is equivalent to \begin{displaymath} \mathbf{H}(X,A) \to \mathbf{H}(U,A) \times \mathbf{H}(V,A) \to \mathbf{H}(U \cap V, A) \end{displaymath} being a [[fiber sequence]]. The corresponding long exact sequence in cohomology (as discussed above) is what is traditionally called the Mayer-Vietoris sequence of the cover of $X$ by $U$ and $V$ in $A$-cohomology. By duality (see [[universal coefficient theorem]]) an analogous statement holds for the [[homology]] of $X$, $U$ and $V$. \hypertarget{references}{}\subsection*{{References}}\label{references} An original reference is \begin{itemize}% \item [[Beno Eckmann]] and [[Peter Hilton]], \emph{Unions and intersections in homotopy theory}, Comment. Math. Helv. 3 (1964),2 93-307, \href{http://dx.doi.org/10.1007/BF02566918}{doi} \end{itemize} A more modern review that emphasizes the role of [[homotopy fiber sequences]] is in \begin{itemize}% \item Eldon Dyer, Joseph Roitberg, \emph{Note on sequence of Mayer-Vietoris type}, Proceedings of the AMS, volume 80, number 4 (1980) (\href{http://www.ams.org/journals/proc/1980-080-04/S0002-9939-1980-0587950-8/S0002-9939-1980-0587950-8.pdf}{pdf}) \end{itemize} Discussion in the context of [[stable model categories]] includes \begin{itemize}% \item [[Peter May]], lemma 5.7 of \emph{The additivity of traces in triangulated categories}, Adv. Math., 163(1):34-73, 2001 (\href{http://www.math.uchicago.edu/~may/PAPERS/AddJan01.pdf}{pdf}) \end{itemize} Discussion in the context of [[homotopy type theory]] includes \begin{itemize}% \item E Cavallo et al, \emph{Exactness of the Mayer-Vietoris Sequence in Homotopy Type Theory} (\href{http://www.contrib.andrew.cmu.edu/~ecavallo/works/mayer-vietoris.pdf}{pdf}) \end{itemize} [[!redirects Mayer-Vietoris sequences]] [[!redirects Mayer-Vietoris long exact sequence]] \end{document}