\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{McKay correspondence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{McKayQuivers}{Via McKay quivers}\dotfill \pageref*{McKayQuivers} \linebreak \noindent\hyperlink{AsAnEquivalenceOfKtheories}{As an equivalence of K-theories}\dotfill \pageref*{AsAnEquivalenceOfKtheories} \linebreak \noindent\hyperlink{ViaSuperYangMillsTheory}{Via $N=2$ super Yang-Mills theory}\dotfill \pageref*{ViaSuperYangMillsTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Generally, the \emph{McKay correspondence} is a subtle correspondence between the theory of [[finite subgroups of SU(2)]], the corresponding [[orbifold]] [[singularities]] ([[du Val singularities]]) and that of [[simple Lie groups]] falling into the [[ADE classification]]. [[!include ADE -- table]] The correspondence may be understood at different levels: \begin{enumerate}% \item \textbf{McKay quivers.} The original correspondence due to \hyperlink{McKay80}{McKay 80} is the observation that the [[McKay quiver]] associated to the [[orbifold]] [[singularity]] $\mathbb{C}^2 \sslash G$ of a [[finite subgroup of SU(2)]] $G \subset SU(2)$ happens to be an extended [[Dynkin quiver]], hence happens to be an extended [[Dynkin diagram]] of the kind that also arises in the [[ADE-classification]] of [[simple Lie groups]]. More on this in \emph{\hyperlink{McKayQuivers}{McKay quivers}}, below. \item \textbf{Equivariant K-theory.} A more conceptual explanation for this correspondence comes from the classical fact that the [[blow up]] $\widehat{\mathbb{C}^2\sslash G}$ of the [[ADE singularity]] $\mathbb{C}^2\sslash G$ is given by a sequence of [[spheres]] that touch along the vertices of the corresponding [[Dynkin quiver]]. In \hyperlink{GSV83}{Gonzalez-Sprinberg \& Verdier 83} it was shown that the $G$-[[equivariant K-theory]] $K_G(\mathbb{C}^2)$ of the singularity is isomorphic to the [[K-theory]] of the desingularization $\widehat {\mathbb{C}^2\sslash G}$ such that under this isomorphism the generators of $K_G(\mathbb{C}^2) \simeq R_\mathbb{C}(G)$, hence of the [[representation ring]], hence the [[irreducible representations]], map to K-theory classes supported on the [[exceptional divisors]] of this blowup. This gives a conceptual geometric/cohomological explanation for the identifications observed by \hyperlink{McKay80}{McKay 80}. More on this in \emph{\hyperlink{AsAnEquivalenceOfKtheories}{As an equivalence of K-theories}} \item \textbf{Seiberg-Witten theory.} Under the interpretation of [[K-theory]]-classes as [[D-brane]] charges, the K-theoretic McKay correspondence of \hyperlink{GSV83}{Gonzalez-Sprinberg \& Verdier 83} identifies [[wrapped brane]] charges of the desingularized space with [[fractional brane]] charges at the singularity. This leads to a further (currently non-rigorous) explanation of the McKay correspondence in terms of the [[AdS-CFT duality|dual]] [[worldvolume]] [[quantum field theories]] on these branes, which are [[N=2 D=4 super Yang-Mills theory|N=2]] [[quiver gauge theories]]: The [[moduli space]] of [[scalar fields]] of these theories has two ``branches'', called the \emph{[[Higgs branch]]} and the \emph{[[Coulomb branch]]}, and the idea is that depending on which of the branches the [[vacuum state]] of the theory is in, it describes the brane as being either on the [[ADE singularity]] or on its [[resolution of singularities|resolution]], but since it's the same quantum field theory in both cases, these two situations are actually suitably equivalent. \end{enumerate} More on this in \emph{\hyperlink{ViaSuperYangMillsTheory}{Via N=2 SYM theory}} below. \hypertarget{McKayQuivers}{}\subsubsection*{{Via McKay quivers}}\label{McKayQuivers} Generally, for $G$ a [[finite group]] and $V$ a [[linear representation]] of $G$ on a [[finite dimensional vector space|finite dimensional]] [[complex vector space]], the \emph{[[McKay quiver]]} or \emph{[[McKay graph]]} associated with $V$ is the [[quiver]] whose [[vertices]] correspond to the [[irreducible representations]] $\rho_i$ of $G$ and which has $a_{i j} \in \mathbb{N}$ [[edges]] between the $i$th and the $j$th vertex, for $a_{i j}$ the [[coefficients]] in the expansion into [[irreps]] of the [[tensor product of representations]] of $V$ with these irreps: \begin{displaymath} V \otimes \rho_i \;\simeq\; \underset{j}{\bigoplus} a_{i j} \cdot \rho_j \,. \end{displaymath} Specifically this applies to the special case where $G \subset$ [[SU(2)]] a [[finite subgroup of SU(2)]] and $V$ its defining representation on $\mathbb{C}^2$. The original \emph{McKay correspondence} (\hyperlink{McKay80}{McKay 80}) states that in this case the corresponding [[McKay quivers]] are [[Dynkin quivers]]/[[Dynkin diagrams]] in the same [[ADE classification]] as the [[ADE singularity]] $\mathbb{C}^2 \sslash G$. More precisely: If one uses \emph{all} [[irreducible representations]] including the 1-dimensiona [[trivial representation]] $\rho_0$ then one gets the ``extended Dynkin diagram'', where the extra node corresponds to $\rho_0$. This is the vertex indicated by a cross in the following diagrams: $\backslash$begin\{center\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \hyperlink{GSV83}{GSV 83, p. 4} \end{quote} In particular, for $G =\mathbb{Z}_N \subset SU(2)$ a [[cyclic group]] of [[order of a group|order]] $N$, there are $N$ complex [[irreps]] and the McKay quiver, i.e. the extended Dynkin diagram, has $N$-vertices, connected by edges to form a circle. \hypertarget{AsAnEquivalenceOfKtheories}{}\subsubsection*{{As an equivalence of K-theories}}\label{AsAnEquivalenceOfKtheories} A strong version of the McKay correspondence is obtained when the [[cohomology theory]] is taken be ([[equivariant K-theory|equivariant]]) \emph{[[K-theory]]} (\hyperlink{GSV83}{Gonzalez-Sprinberg \& Verdier 83}): Here the McKay correspondence becomes an [[isomorphism]] between the [[equivariant K-theory]] $K_{G_{ADE}}(\ast)$ of an [[ADE-singularity]] (equivalently the [[representation ring]] $R(G_{ADE})$) to the plain [[K-theory]] $K(\tilde X)$ of its [[blow-up]] \href{ADE+singularity#ResolutionBySpheresTouchingAlongADynkinDiagram}{resolution} $\tilde X$. Much like in [[topological T-duality]], this isomorphism is given by [[integral transform]] ([[Fourier-Mukai transform]]) through the canonical [[correspondence]] that these spaces constitute: \begin{equation} \itexarray{ && && K( X \times_{X/G} \tilde X ) \\ && & {}^{\mathllap{ p_1^\ast }}\nearrow && \searrow^{\mathrlap{Inv \circ (p_2)_\ast}} \\ R(G) \simeq K_G(\ast) &\simeq& K_G(X) && \overset{\simeq}{\longrightarrow} && K(\tilde X) } \label{KMcKay}\end{equation} In terms of [[physics]] ([[string theory]]), the [[K-theory]] classes appearing here may be interpreted as [[groups]] of [[fractional D-brane|fractional]] [[D-brane charges]] (see \href{fractional+D-brane#DBranesAtOrbifoldSingularities}{there}). In terms of the [[worldvolume]] [[Chan-Paton gauge field|Chan-Paton]]-[[Yang-Mills theory]] on the D-branes the McKay correspondence is then seen as passage from the [[Higgs branch]] to the [[Coulomb branch]] (see \href{fractional+D-brane#InTermsOfTheWorldvolumeGaugeTheories}{there}). The proof of these statements generally proceeds by relating both sides of the equivalence to [[Dynkin diagrams]] of [[ADE-classification|ADE-type]]. The classical McKay correspondence, named after [[John McKay]], is a one-to-one correspondence between the [[McKay graphs]] of [[finite group|finite]] [[subgroups]] $G \subset \text{SL}_2(\mathbb{C})$ and the extended Dynkin diagrams of ADE type. \hypertarget{ViaSuperYangMillsTheory}{}\subsubsection*{{Via $N=2$ super Yang-Mills theory}}\label{ViaSuperYangMillsTheory} Various seemingly unrelated structures in mathematics fall into an [[ADE classification]]. Notably [[finite group|finite]] [[subgroups]] of [[special unitary group|SU(2)]] and [[compact Lie group|compact]] [[simple Lie groups]] do. The way this works usually is that one tries to classify these structures somehow, and ends up finding that the classification is governed by the combinatorics of [[Dynkin diagrams]]. While that does explain a bit, it seems the statement that both the [[icosahedral group]] and the Lie group [[E8]] are related to the same [[Dynkin diagram]] somehow is still more a question than an answer. Why is that so? The first key insight is due to \href{ADE+singularity#Kronheimer89a}{Kronheimer 89}. He showed that the (resolutions of) the [[orbifold]] quotients $\mathbb{C}^2/\Gamma$ for finite subgroups $\Gamma$ of $SU(2)$ are precisely the generic form of the [[gauge group|gauge]] [[orbits]] of the [[direct product group]] of $U(n_i)$s acting in the evident way on the [[direct sum]] of $Hom(\mathbb{C}^{n_i}, \mathbb{C}^{n_j})$-s, where $i$ and $j$ range over the vertices of the [[Dynkin diagram]], and $(i,j)$ over its edges. This becomes more illuminating when interpreted in terms of [[gauge theory]]: in a [[quiver gauge theory]] the [[gauge group]] is a [[direct product group]] of $U(n_i)$ factors associated with vertices of a [[quiver]], and the [[particles]] which are [[charged particle|charged]] under this gauge group arrange, as a [[linear representation]], into a [[direct sum]] of $Hom(\mathbb{C}^{n_i}, \mathbb{C}^{n_j})$-s, for each edge of the quiver. Pick one such particle, and follow it around as the gauge group transforms it. The space swept out is its gauge [[orbit]], and \hyperlink{Kronheimer89}{Kronheimer 89} says that if the quiver is a Dynkin diagram, then this gauge orbit looks like $\mathbb{C}^2/\Gamma$. On the other extreme, gauge theories are of interest whose gauge group is not a big direct product, but is a [[simple Lie group]], such as [[special unitary group|SU(N)]] or [[E8]]. The mechanism that relates the two classes of examples is [[spontaneous symmetry breaking]] (``[[Higgs field|Higgsing]]''): the ground state energy of the field theory may happen to be achieved by putting the fields at any one point in a higher dimensional space of field configurations, acted on by the gauge group, and fixing any one such point ``spontaneously'' singles out the corresponding [[stabilizer subgroup]]. Now here is the final ingredient: it is [[N=2 D=4 super Yang-Mills theory]] (``[[Seiberg-Witten theory]]'') which have a potential that is such that its [[vacua]] break a simple gauge group such as $SU(N)$ down to a Dynkin diagram [[quiver gauge theory]]. One place where this is reviewed, physics style, is in \href{N=2+D=4+super+Yang-Mills+theory#Albertsson03}{Albertsson 03, section 2.3.4}. More precisely, these theories have two different kinds of vacua, those on the ``[[Coulomb branch]]'' and those on the ``[[Higgs branch]]'' depending on whether the scalars of the ``[[vector multiplets]]'' (the gauge field sector) or of the ``[[hypermultiplet]]'' (the matter field sector) vanish. The statement above is for the Higgs branch, but the Coulomb branch is supposed to behave ``dually''. So that then finally is the relation, in the ADE classification, between the simple Lie groups and the finite subgroups of SU(2): start with an N=2 super Yang Mills theory with gauge group a simple Lie group. Let it spontaneously find its vacuum and consider the orbit space of the remaining spontaneously broken symmetry group. That is (a resolution of) the orbifold quotient of $\mathbb{C}^2$ by a discrete subgroup of $SU(2)$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[McKay quiver]] \item [[ADE classification]] \item [[quiver gauge theory]] \item [[wrapped brane]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[John McKay]], \emph{Graphs, singularities, and finite groups} Proc. Symp. Pure Math. Vol. 37. No. 183. 1980 \end{itemize} As an isomorphism between the [[equivariant K-theory]] of [[ADE-singularity]] and the plain [[topological K-theory]] of its \href{ADE+singularity#ResolutionBySpheresTouchingAlongADynkinDiagram}{resolution}, the McKay correspondence is proven in: \begin{itemize}% \item [[Gérard Gonzalez-Sprinberg]], [[Jean-Louis Verdier]], \emph{Construction géométrique de la correspondance de McKay}, Ann. Sci. ́École Norm. Sup.16 (1983) 409–449. (\href{http://www.numdam.org/item?id=ASENS_1983_4_16_3_409_0}{numdam}) \end{itemize} An analogous discussion for [[derived categories]] of coherent sheaves is in \begin{itemize}% \item [[Tom Bridgeland]], [[Alastair King]], [[Miles Reid]], \emph{The McKay correspondence as an equivalence of derived categories} (\href{http://www.ams.org/journals/jams/2001-14-03/S0894-0347-01-00368-X/S0894-0347-01-00368-X.pdf}{pdf}) \end{itemize} Introductions and surveys include \begin{itemize}% \item Graham Leuschke, \emph{The McKay correspondence} (\href{http://www.leuschke.org/uploads/McKay-total.pdf}{pdf}) \item Bockland, \emph{Character tables and McKay quivers} (\href{https://staff.fnwi.uva.nl/r.r.j.bocklandt/notes/kleinian.pdf}{pdf}) \item Drew Armstrong, \emph{Lectures on the McKay correspondence}, 2015 (\href{http://www.math.miami.edu/~armstrong/Talks/McKay_Talca.pdf}{pdf scan of notes}) \item Max Lindh, \emph{An Introduction to the McKay Correspondence Master Thesis in Physics} (\href{http://www.diva-portal.org/smash/get/diva2:1184051/FULLTEXT01.pdf}{pdf}) \item [[John Baez]], \emph{The Geometric McKay Correspondence}, (\href{https://golem.ph.utexas.edu/category/2017/06/the_geometric_mckay_correspond.html}{Part I}, \href{https://golem.ph.utexas.edu/category/2017/07/the_geometric_mckay_correspond_1.html}{Part II}) \end{itemize} Literature collection \begin{itemize}% \item [[Miles Reid]], \emph{\href{http://homepages.warwick.ac.uk/staff/Miles.Reid/McKay/}{Links to papers on McKay correspondence}} \end{itemize} \end{document}