\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Milnor mu-bar invariants} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{knot_theory}{}\paragraph*{{Knot theory}}\label{knot_theory} [[!include knot theory - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{link_group}{Link Group}\dotfill \pageref*{link_group} \linebreak \noindent\hyperlink{invariants}{$\mu$-Invariants}\dotfill \pageref*{invariants} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In \emph{\hyperlink{jmLinkGroups}{Link Groups}} , [[John Milnor]] introduced the notion of the [[Link Group]] as a way to study [[links]]. The notion of equivalence of links that Milnor used is slightly different to that obtained by extending the usual notion of equivalence of [[knots]]. In Milnor's paper, the crucial aspect of links was the interactions between distinct components. Thus for Milnor, a link in a manifold $M$ is a map $\coprod_n S^1 \to M$ such that the components have disjoint images. Similarly, two links are \textbf{homotopic} if there is a [[homotopy]] between the maps which is a link at every time. Thus links can be deformed in such a manner that individual components can pass through themselves, but not through other components. Also link components can have self-intersections or the map on a component can be a constant map. Milnor uses the term \textbf{proper link} to refer to a link in which the map is a homeomorphism onto its image. The [[Whitehead link]] is a simple example of a link that is not trivial under ambient [[isotopy]] but is trivial under Milnor's notion of homotopy. The $\mu$-invariants come from explicit descriptions of the link groups of particular links. Specifically, Milnor calls a link \emph{almost trivial} if every proper sublink is trivial (see [[Brunnian link]]). Such a link corresponds to an element in a particular link group which can be completely described by certain numbers. \hypertarget{link_group}{}\subsection*{{Link Group}}\label{link_group} Let us begin by describing the link group. Milnor's alternative description is as follows. Consider the complement of a link $L$ in an open $3$-manifold $M$. We choose a [[basepoint]] in this complement and so have the [[fundamental group]]. We define a relation on this group as follows: two loops $\alpha$, $\beta$ are equivalent if the link $L \cup \alpha^{-1} \beta$ is homotopic in $M$ to one of the form $L' \cup 1$ (where $1$ is the constant loop at the basepoint). The \textbf{link group} is the group of equivalence classes of such loops. A more practical description is the following. \begin{defn} \label{linkgroup}\hypertarget{linkgroup}{} Let $L$ be a link in an open $3$-manifold $M$. Let $G(L)$ be the fundamental group of the complement of $L$. Let $L^i$ denote the sublink obtained by deleting the $i$th component of $L$. Let $A_i(L)$ be the kernel of the natural inclusion $G(L) \to G(L^i)$ and $[A_i]$ its commutator subgroup. Let $E(L) = [A_1] [A_2] \cdots [A_n]$. This is a normal subgroup of $G(L)$. The quotient, $\mathcal{G}(L) \coloneqq G(L)/E(L)$ is the \textbf{link group} of $L$. \end{defn} Milnor's first theorem on this group was to show that this group is an invariant of the homotopy class of the link, at least for proper links. \begin{theorem} \label{htyinv}\hypertarget{htyinv}{} If two proper links are homotopic, then their link groups are isomorphic. \end{theorem} To study this group for a particular link, we need to find some particular elements in it. These are the \textbf{meridians} and the \textbf{parallels}. Basically, a meridian goes around one component of the link once, in a specific direction, whilst a parallel goes along it. Technically, the parallels of a link are not \emph{elements} of its link group, but cosets. Choose a component $L_i$ of the link $L$. Choose orientations of the ambient manifold, $M$, and of the circle. To define the meridian and parallel of $L_i$ we need to choose a path from the basepoint, $x_0$, to a point on the image of $L_i$ which does not intersect the image of $L$ at any other time. Let $p$ be such a path, so then $p(1)$ is a point on the image of $L_i$. \begin{defn} \label{meridian}\hypertarget{meridian}{} The \textbf{$i$th meridian} of $L$ is the element $\alpha_i \in \mathcal{G}(L)$ defined as follows. Choose a small neighbourhood $N$ of $p(1)$. Define a path by going along $p$ until we are inside $N$, then go around a closed loop in $N$ which has linking number $+1$ with the part of the image of $L_i$ inside $N$. Then return to $x_0$ along $p$. \end{defn} \begin{defn} \label{parallel}\hypertarget{parallel}{} \end{defn} The basic method of studying a link via link groups is to consider a link as an element of the link group of the link obtained by removing one of its components. To show that this is a reasonable thing to do, Milnor proved the following theorem. \begin{theorem} \label{conjelts}\hypertarget{conjelts}{} Let $L$ be a proper link with $n$ components. Let $f$, $f'$ be closed loops in the complement of $L$. If they represent conjugate elements of $\mathcal{G}(L)$ then the links $(L,f)$ and $(L,f')$ are homotopic. \end{theorem} \hypertarget{invariants}{}\subsection*{{$\mu$-Invariants}}\label{invariants} For [[Brunnian links]], which Milnor calls \textbf{almost trivial} links, the classification question reduces to looking at elements of the link group of trivial links. It is important to note that the ambient space here is Euclidean space, $\mathbb{R}^3$. Let $L$ be an $n$-component Brunnian link. Then we consider the element $\beta'_n \in \mathcal{G}(L^n)$ corresponding to the $n$th parallel. Upon removing a further component, say the $n-1$st, this element becomes trivial since we are then looking at $L^{n-1}$ which is trivial. Thue $\beta'_n \in \mathcal{A}_{n-1}(L^n)$, the kernel of $\mathcal{G}(L^n) \to \mathcal{G}(L^{n-1,n})$ (here $L^{n-1,n}$ is $L$ with both the $n-1$st and $n$th components removed). Now $\mathcal{A}_{n-1}(L^n)$ is the smallest normal subgroup containing the meridian $\alpha_{n-1}$ (since removing the $n-1$st component is the same thing as allowing the meridian $\alpha_{n-1}$ to collapse) and so every element of $\mathcal{A}_{n-1}$ can be written as a word in alphabet of powers and conjugates of $\alpha_{n-1}$. Milnor uses the notation \begin{displaymath} \alpha_{n-1}^\sigma, \quad \sigma \in \mathcal{R}(L^{n-1,n}) \end{displaymath} to write this. The exponent $\sigma$ itself decomposes as \begin{equation} \sigma = \sum \mu(i_1 \cdots i_{n-2}, n-1 n) k_{i_1} \cdots k_{i_{n-2}} \label{muinvs}\end{equation} where the summation is over all permutations $i_1 \cdots i_{n-2}$ of $1$, $2$, \ldots{}, $n-2$. \begin{theorem} \label{muinvs}\hypertarget{muinvs}{} The integers $\mu(i_1 \cdots i_{n-2}, n_1 n)$ are homotopy invariants of $L$. The homotopy class of $L$ is completely specified by these integers. \end{theorem} There was nothing special about the choice of components. A similar procedure works for any pair of components. The resulting integers obey the following rules: \begin{displaymath} \begin{aligned} \mu(i_1 i_2 \cdots i_{n-2}, i_{n-1} i_n) &= \mu(i_n i_1 i_2 \cdots i_{n-3}, i_{n-2} i_{n-2}) \\ \mu(i_1 \cdots i_{\nu} r j_1 \cdots j_{n-\nu-2} s) &= (-1)^{n-\nu} \sum \mu(h_1 \cdots h_{n-2} r s) \end{aligned} \end{displaymath} In the second identity, the summation is over all shuffle products of $(i_1 \cdots i_{\nu})$ with $(j_1 \cdots j_{n - \nu - 2})$. Let us expand on the definition of the $\mu$-invariants. We start with the exponential notation. The following holds for an arbitrary proper link, $L$, embedded in an open $3$-manifold $M$. Let $J \mathcal{G}(L)$ be the integral group ring of $\mathcal{G}(L)$. As mentioned above, any element of $\mathcal{A}_i(L)$ is a product of powers of conjugates of $\alpha_i$. We can write such an element in the form $\alpha_i^s$ for $s \in J \mathcal{G}(L)$ by interpreting: \begin{displaymath} \begin{aligned} \alpha_i^{x + y} &= \alpha_i^x \alpha_i^y \\ \alpha_i^{k x} &= (\alpha_i^x)^k \\ \alpha_i^\beta &= \beta \alpha \beta^{-1} \end{aligned} \end{displaymath} where $x, y \in J\mathcal{G}(L)$, $k \in \mathbb{Z}$, and $\beta \in \mathcal{G}(L)$. We write the kernel of $J \mathcal{G}(L) \to J \mathcal{G}(L^i)$ as $\mathcal{K}_i(L)$. Using these, we define: \begin{displaymath} \mathcal{R}(L) \coloneqq J \mathcal{G}(L) / \mathcal{K}_1(L)^2 + \cdots + \mathcal{K}_n(L)^2 \end{displaymath} Now the notation $\alpha_i^s$ for an element of $\mathcal{A}_i(L)$ does not provide an injective map from $J\mathcal{G}(L)$ to $\mathcal{A}_i(L)$. The kernel is the ideal $\mathcal{K}_i(L) + (\mathcal{K}_1(L)^2 + \cdots + \mathcal{K}_n(L)^2)$ which is naturally isomorphic to $\mathcal{R}(L^i)$. \begin{theorem} \label{trivlink}\hypertarget{trivlink}{} Let $L$ be a link which is homotopic to one in with the $i$th component is constant. Then every element of $\mathcal{A}_i(L)$ can be expressed uniquely in the form $\alpha_i^\sigma$ with $\sigma \in \mathcal{R}(L^i)$. \end{theorem} Now let us suppose that $L$ is trivial. Then $G(L)$ is the free product of the fundamental group of $M$ with the infinite cyclic groups generated by the (elements representing the) meridians of $L$. Let these be $a_1$, \ldots{}, $a_n$ and let $k_i = a_i - 1$ in $J G(L)$. Milnor defines a \textbf{canonical word} to be a product of the form $\phi_0 k_{j_1} \phi_1 k_{j_2} \phi_2 \cdots k_{j_p} \phi_p$ with $p \ge 0$, $\phi_i \in \pi_1(M)$, and $1 \le j_i \le n$. A \textbf{canonical sentence} is a sum or difference of any number of canonical words. It turns out (\hyperlink{jmLinkGroups}{Milnor, Theorem 7}) that each element of $\mathcal{R}(L)$ is represented by a unique canonical sentence. Now let us return to the case of the almost trivial link in Euclidean space. From above, we have the element $\beta'_n \in \mathcal{A}_i(L^n)$ corresponding to the $n$th parallel. Removing any other component allows us to trivialise $\beta'_n$ since removing, say, the $i$th component leaves us with $L^i$ which is homotopic to the trivial link on $n-1$ components. Removing the $i$ component corresponds to setting $a_i$ to $1$ in $J G(L^n)$, equivalently to setting $k_i = 0$. So upon setting $k_i = 0$ we must have that $\beta'_n \mapsto 1$ and thus (by uniqueness) $\sigma \mapsto 0$. Hence $k_i$ divides $\sigma$, and so every canonical word in $\sigma$ is of the form $k_{i_1} \cdots k_{i_{n-2}}$ for some permutation of $1$, $2$, \ldots{}, $n-2$. Sorting them out by permutation, we get the expression in \eqref{muinvs}. Now, how do we interpret or calculate these invariants? We need to work out what an expression of the form in \eqref{muinvs} is saying. Consider a canonical word, $k_{i_1} \cdots k_{i_{n-2}}$. The corresponding element is: \begin{displaymath} \alpha_{n-1}^{k_{i_1} \cdots k_{i_{n-2}}} \end{displaymath} Let us write $\alpha = \alpha_{n-1}$. Now $\alpha^{k_1}$ is $\alpha^{a_1 - 1} = a_1 \alpha a_1^{-1} \alpha^{-1}$. Thus this tells us to go around $L_1$, then $L_{n-1}$, back around $L_1$, and finally back around $L_{n-1}$. Each time we introduce a new power, we do the same except that we replace the loop around $L_{n-1}$ with the loop so far constructed. So the general method is as follows: choose two components of the link. Write one of them as a word in the meridians of the others. Then simplify this word using the other chosen link as the ``base'': namely, write everything in terms of conjugates of that base. This will then separate out into the desired form and, hopefully, the link invariants can be read off. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[John Milnor]] (1954). Link groups. \emph{Ann. of Math. (2)}, \emph{59}, 177--195. \href{http://www.ams.org/mathscinet-getitem?mr=71020}{MR} \end{itemize} \end{document}