\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Models for Smooth Infinitesimal Analysis} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{synthetic_differential_geometry}{}\paragraph*{{Synthetic differential geometry}}\label{synthetic_differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] This entry is about the book \begin{itemize}% \item [[Ieke Moerdijk]], [[Gonzalo Reyes|Gonzalo E. Reyes]], \emph{Models for Smooth Infinitesimal Analysis} Springer (1991) \end{itemize} about models of [[smooth topos]]es for [[synthetic differential geometry]] that have a [[full and faithful functor|full and faithful]] embedding of the [[category]] [[Diff]] of smooth [[manifold]]s. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{summary}{Summary}\dotfill \pageref*{summary} \linebreak \noindent\hyperlink{Models}{Models}\dotfill \pageref*{Models} \linebreak \noindent\hyperlink{the_topos_}{the topos $\mathcal{G}$}\dotfill \pageref*{the_topos_} \linebreak \noindent\hyperlink{the_topos__2}{the topos $\mathcal{F}$}\dotfill \pageref*{the_topos__2} \linebreak \noindent\hyperlink{the_topos__3}{the topos $\mathcal{Z}$}\dotfill \pageref*{the_topos__3} \linebreak \noindent\hyperlink{the_topos__4}{the topos $\mathcal{B}$}\dotfill \pageref*{the_topos__4} \linebreak \hypertarget{summary}{}\subsection*{{Summary}}\label{summary} The book discusses the construction and the properties of [[smooth topos]]es $(\mathcal{T},R)$ that model the axioms of [[synthetic differential geometry]] and are \emph{well-adapted} to [[differential geometry]] in that there is a [[full and faithful functor]] $Diff \to \mathcal{T}$ embedding the [[category]] [[Diff]] of smooth [[manifold]]s into the more general category $\mathcal{T}$. All models are obtained as [[category of sheaves|categories of sheaves]] on [[site]]s whose underlying category is a [[subcategory]] of that of [[smooth loci]]. \begin{itemize}% \item [[de Rham theorem|synthetic de Rham theorem]] \end{itemize} \hypertarget{Models}{}\subsection*{{Models}}\label{Models} The following tabulates various models for [[smooth topos]]es and lists their properties. \hypertarget{the_topos_}{}\subsubsection*{{the topos $\mathcal{G}$}}\label{the_topos_} \hypertarget{the_topos__2}{}\subsubsection*{{the topos $\mathcal{F}$}}\label{the_topos__2} \hypertarget{the_topos__3}{}\subsubsection*{{the topos $\mathcal{Z}$}}\label{the_topos__3} The [[smooth topos]] $\mathcal{Z}$ is that of [[sheaf|sheaves]] on the category $\mathbb{L}$ of [[smooth loci]] with respect to the [[Grothendieck topology]] given by \emph{finite} open covers of smooth loci. \begin{udefn} $\mathcal{Z} := Sh_{fin-open}(\mathbb{L})$ is the [[category of sheaves]] on the entire [[site]] $\mathbb{L}$ of [[smooth locus|smooth loci]] where the [[cover]]ing [[sieve]]s of any [[smooth locus]] $\ell A$ are those generated by covering families \begin{displaymath} \{f_i : \ell A_i \to \ell A\} \end{displaymath} given by a \emph{finite} collection of elements $(a_i \in A)_{i=1}^n$ such that the ideal generated by these elements contains the unit, $1 \in (a_1, \cdots, a_n)$, and for each $i$ a commutative diagram \begin{displaymath} \itexarray{ \ell A_i &&\stackrel{\simeq}{\to}&& \ell (A\{a_i^{-1}\}) \\ & {}_{\mathllap{f_i}}\searrow && \swarrow \\ && \ell A } \,, \end{displaymath} where the right diagonal morphism is the canonical inclusion of a smooth locus corresponding to a [[generalized smooth algebra|smooth ring]] with one element inverted. \end{udefn} This is in chapter VI, 1. Inversion of elements is described around proposition 1.6 in chapter I. For instance for $\ell A = R = \ell C^\infty(\mathbb{R})$ the real line, a covering family is given by maps from two further copies of the real line $f_{1,2} : R \to R$ determined by any two smooth functions $a_1, a_1 \in C^\infty(\mathbb{R})$ with support $(-\infty,1)$ and $(-1,\infty)$. By proposition 1.6 in chapter I we have $C^\infty(\mathbb{R})\{a_1^{-1}\} = C^\infty((-\infty,1))$ and $C^\infty(\mathbb{R})\{a_2^{-1}\} = C^\infty((-1,\infty))$. As both these open intervals are diffeomorphic to the real line, and as [[Diff]] embeds fully, we have isomorphisms $R \stackrel{\simeq}{\to} \ell(C^\infty(\mathbb{R}/{a_i^{-1}})$. Hence the cover defined by $(a_i, a_2)$ is the ordinary open cover of the real line by the two open subsets $(-\infty,1)$ and $(-1,\infty)$. Similarly using I.1.6, one finds the general result: \begin{ulemma} Let $\ell C^\infty(U)/I$ be a [[smooth locus]] with $U \subset \mathbb{R}^n$ open and $I$ an ideal of $C^\infty(U)$. Then, up to isomorphisms, its covering families are precisely those families \begin{displaymath} \{\ell C^\infty(U_i)/(I|U_i) \to \ell C^\infty(U_i)/I\}_{i=1}^n \end{displaymath} such that the $U_i \subset U$ are an ordinary open cover of $U$. Equivalently, such families where the $(U_i)$ need not cover all of $U$, but where there is $V \subset U$ open such that the $(U_i)$ together with $V$ do cover and $1 \in I|_V$. \end{ulemma} \begin{proof} This is lemma 1.2 in chapter VI. \end{proof} We now list central properties of this topos. \hypertarget{proposition}{}\paragraph*{{Proposition}}\label{proposition} \textbf{(properties)} For the [[topos]] $\mathcal{Z}$ the following is true. \begin{itemize}% \item the [[Grothendieck topology]] is [[subcanonical coverage|subcanonical]] (chapter VI, lemma 1.3) \item the [[category]] [[Diff]] of smooth [[manifold]]s embeds [[full and faithful functor|full and faithfully]], $Diff \hookrightarrow \mathcal{Z}$ (chapter VI, corollary 1.4) \item the general [[Kock-Lawvere axiom]] holds (chapter VI, 1.9) \item the [[integration axiom]] holds (chapter VI, 1.10) \item it models [[nonstandard analysis]] in that \begin{itemize}% \item since the topology is subcanonical, in particular the [[smooth locus]] $\mathbb{I} := \ell(C^\infty(\mathbb{R}-{0})/(f|germ_0(f) = 0))$ of the ring of restrictions of [[germ]]s of functions at 0 to $\mathbb{R}-{0}$ is an object: the object of \textbf{invertible infinitesimals}. However, even though this object exists, in the [[intuitionistic logic|intuitionistic]] [[internal logic]] of the topos one cannot prove that there are any infinitesimal \emph{elements} : all one can prove is that it is false that there are no elements: $\not \not \exists x : x \in \mathbb{I}$. (chapter VI, section 1.8) This changes when one refines to the topos $\mathcal{B}$, discussed below (section VI.5). \item due the conditions that covers are finite, the [[smooth locus]] $N := \ell C^\infty(\mathbb{N})$ -- which is such that functions to it are arbitrary locally constant $\mathbb{N}$-valued functions -- does not coincide with the [[natural numbers object]] of the topos, which is the [[sheafification]] of the [[presheaf]] constant on $\mathbb{N} \in Set$: since covering families are by \emph{finite} covers it follows that maps into the sheafification of the presheaf constant on $\mathbb{N}$ are \emph{bounded} smooth $\mathbb{N}$-valued functions, instead of all such functions. (chapter VI, 1.6) The object $N = \ell C^\infty(\mathbb{N})$ is called the object of \textbf{[[smooth natural numbers]]} . It may be thought of as containing ``infinite natural numbers''. \end{itemize} \end{itemize} \hypertarget{the_topos__4}{}\subsubsection*{{the topos $\mathcal{B}$}}\label{the_topos__4} The [[smooth topos]] $\mathcal{B}$ may be motivated as a slight refinement of the topos $\mathcal{Z}$ designed such that in the [[internal logic]] of $\mathcal{B}$ it does become true that for $\mathbb{I}$ the object of invertible infinitesimals, we have $\exists x : x \in \mathbb{I}$, internally. \begin{udefn} \textbf{(chapter VI, 5.1)} $\mathcal{B} := Sh_{fin-open/proj}(\mathbb{L})$ is the [[category of sheaves]] on the [[site]] $\mathbb{L}$ of [[smooth locus|smooth loci]] with [[cover]]ing [[sieve]]s given by \begin{itemize}% \item finite open covers as above for $\mathbb{Z}$ \item and in addition letting projections $\ell A \times \ell B \to \ell A$ out of [[product]]s in $\mathbb{L}$ (for $B \neq 0$ if $A \neq 0$) be singleton covers. \end{itemize} \end{udefn} (This is not a [[Grothendieck topology]], as it is not closed under composition, but still a [[coverage]].) \hypertarget{proposition_2}{}\paragraph*{{Proposition}}\label{proposition_2} \textbf{(properties)} The topos inherits most of the properties of $\mathcal{Z}$, notably: \begin{itemize}% \item the [[Grothendieck topology]] is [[subcanonical coverage|subcanonical]] (chapter VI, 5.2) \item the [[category]] [[Diff]] of smooth [[manifold]]s embeds [[full and faithful functor|full and faithfully]], $Diff \hookrightarrow \mathcal{B}$ (chapter VI, 5.2) \item the general [[Kock-Lawvere axiom]] holds (chapter VI, below 5.4) \item the [[integration axiom]] holds (chapter VI, below 5.4) \item invertible infinitesimally small and infinitesimally big numbers are realized (with some vague similarity to [[nonstandard analysis]], but without its basic features like transfer principle in full generality) (chapter VI, below 5.4). \end{itemize} A main difference is that in $\mathcal{B}$ every [[smooth locus]], i.e. every [[representable functor|representable]], is an [[inhabited object]]. In particular therefore there exist, in the [[internal logic]], elements of the object of invertible infinitesimals: \begin{displaymath} \exists x \in \mathbb{I} \,. \end{displaymath} (chpater VI, prop 5.4). category: reference \end{document}