\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Moebius transformation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{crossratios}{Cross-ratios}\dotfill \pageref*{crossratios} \linebreak \noindent\hyperlink{action_on_hyperbolic_space}{Action on hyperbolic space}\dotfill \pageref*{action_on_hyperbolic_space} \linebreak \noindent\hyperlink{modular_group}{Modular group}\dotfill \pageref*{modular_group} \linebreak \noindent\hyperlink{abstract_structure_of_modular_group}{Abstract structure of modular group}\dotfill \pageref*{abstract_structure_of_modular_group} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Let $k$ be a [[field]], and let $\mathbb{P}^1(k)$ be the [[projective line]] over $k$. A \emph{M\"o{}bius transformation} (also called a \emph{homography}, a \emph{linear fractional transformation}, or a \emph{fractional linear transformation} which is my own preference -- Todd) is a function $f: \mathbb{P}^1(k) \to \mathbb{P}^1(k)$ defined by the rule \begin{displaymath} f(x) = \frac{a x + b}{c x + d} \end{displaymath} where $a, b, c, d \in k$ and $a d - bc \in k^\times$. M\"o{}bius transformations form a group under composition, isomorphic to the [[projective linear group]] \begin{displaymath} PGL_2(k) \coloneqq GL_2(k)/\{\lambda I: \lambda \in k^\times\} \end{displaymath} If, as in the case $k = \mathbb{C}$, each element of $k^\times$ has a square root, then this group is identified with \begin{displaymath} PSL_2(k) \coloneqq SL_2(k)/\pm I. \end{displaymath} Alternatively, a fractional linear transformation can be considered as synonymous with an automorphism of the field of [[rational functions]] $k(x)$ as a field over $k$ of [[transcendence degree]] 1. In [[complex analysis]] (which is the usual context when one speaks of M\"o{}bius transformations; otherwise one usually calls them by some combination of ``linear'' and ``fractional''), M\"o{}bius transformations are precisely the [[biholomorphisms]] of the [[Riemann sphere]], hence exactly its bijective [[conformal transformations]]. Often, and particularly when $k$ is the the [[commutative ring]] of integers $\mathbb{Z}$, one considers a \emph{modular group} where the coefficients $a, b, c, d$ are assumed to lie in an integral domain and $a d - b c = 1$. (The [[homotopy quotient]] of the [[upper half-plane]] by the group $PGL_2(\mathbb{Z})$ is the [[moduli stack of elliptic curves]] over the [[complex numbers]].) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{crossratios}{}\subsubsection*{{Cross-ratios}}\label{crossratios} \begin{prop} \label{}\hypertarget{}{} The action $PGL_2(k) \times \mathbb{P}^1(k) \to \mathbb{P}^1(k)$ is [[transitive action|3-transitive]], i.e., any triplet of distinct points $(a, b, c)$ may be mapped to any other triplet of distinct points $(a', b', c')$ by applying a group element. \end{prop} \begin{proof} It suffices to consider $a' = 0, b' = 1, c' = \infty$ where one applies the transformation $x \mapsto \frac{(x-a)(b-c)}{(x-c)(b-a)}$. \end{proof} This motivates the following definition: given a 4-tuple $(a, b, c, d)$ of distinct points in $\mathbb{P}^1(k)$, its \emph{cross-ratio} is \begin{displaymath} \gamma(a, b, c, d) = \frac{(d-a)(b-c)}{(d-c)(b-a)}. \end{displaymath} It is not hard to see that the group action preserves the cross-ratio, i.e., $\gamma(g \cdot a, g \cdot b, g \cdot c, g \cdot d) = \gamma(a, b, c, d)$. Moreover, the group action is transitive on each cross-ratio-equivalence class of 4-tuples. In the case $k = \mathbb{C}$ where $\mathbb{P}^1$ is interpreted as the Riemann sphere, it turns out that the cross-ratio of a 4-tuple is a [[real number]] if and only if the four points lie on a [[circle]] (or a line which is a circle passing through $\infty$). Hence M\"o{}bius = conformal transformations take circles to circles. \hypertarget{action_on_hyperbolic_space}{}\subsubsection*{{Action on hyperbolic space}}\label{action_on_hyperbolic_space} As explained at [[Poincare group]], the group $PSL_2(\mathbb{C})$ can be identified with those [[linear transformations]] of Minkowski space $\mathbb{R}^4$ that preserve the Minkowski [[quadratic form|form]] $Q$, are [[orientation]]-preserving, and take the forward [[light cone]] $\{v = (\vec{x}, t): Q(v) = 0, t \gt 0\}$ to itself. It follows that $PSL_2(\mathbb{C})$ acts on the hyperboloid sheet \begin{displaymath} H^3 = \{v = (\vec{x}, t): Q(v) = 1, t \gt 0\} \end{displaymath} which is naturally identified with hyperbolic 3-space. There is a Poincar\'e{} disk model for $H^3$; consider the disk $D^3$ that is the intersection of the [[future cone]] $\{v = (\vec{x}, t): Q(v) \geq 0, t \gt 0\}$ with the hyperplane $t = 1$. Its interior is an open 3-disk $int(D^3)$ which can be placed in perspective with $H^3$ by considering lines through the origin in $\mathbb{R}^4$: each line that passes through a unique point in $H^3$ passes through a unique point of $int(D^3)$. In this way, $D^3$ is viewed as a natural compactification of $H^3$, and the action of $PSL_2(\mathbb{C})$ on $H^3$ induces an action of $PSL_2(\mathbb{C})$ on $D^3$. The restriction of this action to the boundary $S^2 = \partial D^3$ (``the heavenly sphere'') coincides with the action on the Riemann sphere $S^2 = \mathbb{P}^1(\mathbb{C})$. \hypertarget{modular_group}{}\subsection*{{Modular group}}\label{modular_group} The \emph{modular group} $\Gamma$ is the subgroup $PSL_2(\mathbb{Z}) \hookrightarrow PSL_2(\mathbb{C})$ consisting of M\"o{}bius transformations $z \mapsto \frac{a z + b}{c z + d}$ where $a, b, c, d \in \mathbb{Z}$ and $a d - b c = 1$. The group $PSL_2(\mathbb{R})$ acts on the upper half-plane $H = \{z \in \mathbb{C}: Im(z) \geq 0\}$ (or rather $H \cup \{\infty\}$ as a subspace of the Riemann sphere), by restriction of the action of $PSL_2(\mathbb{C})$ on the Riemann sphere. Indeed, the action of $PSL_2(\mathbb{R})$ takes the real line $\mathbb{R} \cup \{\infty\}$ to itself, and any element $f(z) = \frac{a z + b}{c z + d}$ takes $i$ to $(b + a i)(d - c i)/(c^2 + d^2)$, whose imaginary part $(ad - b c)/(c^2 + d^2) = 1/(c^2 + d^2)$ is positive. By continuity it follows that the action preserves the sign of the imaginary part, hence takes the upper-half plane $H$ to itself. It is illuminating to think of complex numbers $\tau$ such that $Im(\tau) \gt 0$ as representing [[elliptic curves]] $E$. Indeed, the [[field]] of [[meromorphic functions]] on an elliptic curve (i.e., a complex projective curve $E$ of [[genus]] $1$, or a [[torus]] equipped with a structure of complex analytic 1-manifold) can be identified with a field of doubly periodic [[holomorphic functions]] $\mathbb{C}/L \to \mathbb{P}^1(\mathbb{C})$ where $L = \langle \omega_1, \omega_2\rangle$ is a fundamental lattice (a discrete cocompact subgroup of the additive [[topological group]] $\mathbb{C}$) attached to $E$. In essence, this field is generated by [[Weierstrass elliptic functions]] $\wp(z), \wp'(z): \mathbb{C}/L \to \mathbb{P}^1(\mathbb{C})$ (here $\wp'$ is the [[derivative]] of $\wp$) which satisfy a [[cubic curve|cubic algebraic relation]] \begin{displaymath} (\wp')^2 = 4\wp^3 - g_2\wp - g_3 \end{displaymath} where the constants $g_2, g_3$ are expressed as certain [[Eisenstein series]] in the fundamental periods $\omega_1, \omega_2$. The $\mathbb{Z}$-[[linear basis]] elements $\omega_1, \omega_2$ of the [[lattice]] may be arranged so that $\tau = \omega_2/\omega_1$ has positive imaginary part. Of course, if there is a [[homothety]] $z \mapsto \lambda z$ that takes a lattice $L$ to a lattice $L'$, then the elliptic curves $E = \mathbb{C}/L$ and $E' = \mathbb{C}/L'$ are analytically isomorphic, so the map \begin{displaymath} \tau \mapsto \mathbb{C}/\langle 1, \tau\rangle \end{displaymath} gives a surjection from complex numbers with positive imaginary part to isomorphism classes of smooth elliptic curves. Thus we may restrict attention to lattices of the form $L = \langle 1, \tau \rangle$. Of course, $L$ admits more than one such basis $(1, \tau)$, but for any other $(1, \tau')$ there is a [[linear transformation]] $\gamma \in \Gamma \coloneqq PSL_2(\mathbb{Z})$ such that $\gamma(\tau) = \tau'$. In summary, the [[orbit space]] \begin{displaymath} \{\tau \in \mathbb{C}: Im(\tau) \gt 0\}/\Gamma \end{displaymath} is a coarse [[moduli space]] for elliptic curves. In this context, one often says that elliptic curves are paramatrized by the $j$-[[j-invariant|invariant]], a certain [[modular form]] $j(\tau)$ defined on the upper half-plane such that $j(\tau) = j(\tau')$ if and only if $\tau' = \gamma \cdot \tau$ for some $\gamma \in \Gamma$. Of course, in some cases there may be more than one $\gamma \in \Gamma$ that fixes a given $\tau$; this is notably the case when $\tau$ is a fourth root of unity or a sixth root of unity. A more refined approach then is to consider, instead of the coarse orbit space, the (compactified) [[moduli stack]] $(H \cup \{\infty\})//\Gamma$ for elliptic curves, as a central geometric object of interest. \hypertarget{abstract_structure_of_modular_group}{}\subsubsection*{{Abstract structure of modular group}}\label{abstract_structure_of_modular_group} As an abstract [[group]], $\Gamma = PSL_2(\mathbb{Z})$ is a [[free product]] $\mathbb{Z}/(2) \ast \mathbb{Z}/(3)$; explicitly, we may take the generator of order $2$ to be given by the Moebius transformation $z \mapsto -1/z$, and the generator of order $3$ to be given by $z \mapsto (z-1)/z$. This [[concrete group]] and certain of its subgroups, such as [[congruence subgroups]], are fairly ubiquitous; for example the modular group appears in the theory of \href{http://ncatlab.org/nlab/show/continued+fraction#rational_tangles}{rational tangles} and of [[combinatorial map|trivalent maps]], and these groups frequently crop up in the theory of buildings (stuff on hyperbolic buildings to be filled in). It is also worth pointing out that $\Gamma$ is a quotient of the [[braid group]] $B_3$. Consider the standard Artin presentation of $B_3$, with two generators $\sigma_1$, $\sigma_2$ subject to the relation \begin{displaymath} \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2. \end{displaymath} Then $z \coloneqq (\sigma_1 \sigma_2)^3$ is a [[center|central element]] of $B_3$, and there is a central extension \begin{displaymath} 1 \to \mathbb{Z} \stackrel{1 \mapsto z}{\to} B_3 \stackrel{q}{\to} \Gamma \to 1 \end{displaymath} where $q$ is the unique homomorphism mapping $\sigma_1\sigma_2$ to $\lambda z. (z-1)/z$, and $\sigma_1\sigma_2\sigma_1$ to $\lambda z. \frac{-1}{z}$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[SL(2,Z)]] \item [[conformal group]] \item [[elliptic fibration]] \item [[congruence subgroup]] \item [[level n subgroup]], \item [[modular equivariant elliptic cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Named after \emph{[[August Möbius]]}. [[!redirects Moebius transformations]] [[!redirects moebius transformation]] [[!redirects moebius transformations]] [[!redirects Möbius transformation]] [[!redirects Möbius transformations]] [[!redirects möbius transformation]] [[!redirects möbius transformations]] [[!redirects linear fractional transformation]] [[!redirects linear fractional transformations]] [[!redirects fractional linear transformation]] [[!redirects fractional linear transformations]] [[!redirects Möbius group]] [[!redirects Moebius group]] [[!redirects modular group]] [[!redirects modular groups]] \end{document}