\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Monster group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{exceptional_structures}{}\paragraph*{{Exceptional structures}}\label{exceptional_structures} [[!include exceptional structures -- contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{presentation}{Presentation}\dotfill \pageref*{presentation} \linebreak \noindent\hyperlink{via_coxeter_groups}{Via Coxeter groups}\dotfill \pageref*{via_coxeter_groups} \linebreak \noindent\hyperlink{ViaAutomorphisms}{Via automorphisms of a super vertex operator algebra}\dotfill \pageref*{ViaAutomorphisms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{Monster group} $M$ is a [[finite group]] that is the largest of the [[sporadic finite simple group]]s. It has [[order of a group|order]] \begin{displaymath} \begin{aligned} & 2^{46}\cdot 3^{20}\cdot 5^9\cdot 7^6\cdot 11^2\cdot 13^3\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 41\cdot 47\cdot 59\cdot 71 \\ & = 808017424794512875886459904961710757005754368000000000 \end{aligned} \end{displaymath} and contains all but six (the `[[pariah groups]]') of the other 25 [[sporadic finite simple groups]] as [[subquotients]], called the \emph{[[Happy Family]]}. See also [[Moonshine]]. \hypertarget{history}{}\subsection*{{History}}\label{history} The Monster group was predicted to exist by [[Bernd Fischer]] and [[Robert Griess]] in 1973, as a [[simple group]] containing the [[Fischer groups]] and some other sporadic simple groups as [[subquotients]]. Subsequent work by Fischer, Conway, Norton and Thompson estimated the order of $M$ and discovered other properties and subgroups, assuming that it existed. In a famous paper \begin{itemize}% \item [[Robert Griess]], \emph{The Friendly Giant} , Inventiones (1982) \end{itemize} Griess proved the existence of the largest simple sporadic group. The author constructs ``by hand'' a non-associative but commutative algebra of dimension 196883, and showed that the [[automorphism group]] of this algebra is the conjectured friendly giant/monster simple group. The name ``Friendly Giant'' for the Monster did not take on. After Griess found this algebra [[Igor Frenkel]], [[James Lepowsky]] and Meurman and/or Borcherds showed that the Griess algebra is just the degree 2 part of the infinite dimensional [[Moonshine vertex algebra]]. There is a school of thought, going back to at least [[Israel Gelfand]], that sporadic groups are really members of some other infinite families of algebraic objects, but due to numerical coincidences or the like, just happen to be groups (see \href{http://golem.ph.utexas.edu/category/2006/09/mathematical_kinds.html}{this nCafe post}). One version of this, in the case of the Monster (and perhaps for other sporadic groups via [[Moonshine]] phenomena) is that what we know as the Monster is just a shadow of a [[2-group]], as the Monster can be constructed as an automorphism group of a [[conformal field theory]], a structure rich enough to have a automorphism 2-group(oid) (see \href{http://golem.ph.utexas.edu/category/2008/10/john_mckay_visits_kent.html#c019440}{this nCafe discussion}). \hypertarget{presentation}{}\subsection*{{Presentation}}\label{presentation} \hypertarget{via_coxeter_groups}{}\subsubsection*{{Via Coxeter groups}}\label{via_coxeter_groups} The Monster admits a reasonably succinct description in terms of [[Coxeter groups]]. Let $[n]$ denote the linear [[graph]] with vertices $0, 1, \ldots, n$ with an edge between adjacent numbers $i, i+1$ and no others. If $1$ is the terminal (1-element) graph, there is a map $0: 1 \to [n]$, mapping the vertex of $1$ to the vertex $0$. Regarding this as an object in the [[undercategory]] $1 \downarrow Graph$, let $Y_{443}$ be the [[coproduct]] of the three objects $0: 1 \to [4]$, $0: 1 \to [4]$, $0: 1 \to [3]$ in $1 \downarrow Graph$. This (pointed) graph has 12 elements and is shaped like a $Y$, with arms of length 4, 4, 3 emanating from a central vertex of valence $3$. Regard $Y_{443}$ as a [[Coxeter diagram]]. The associated [[Coxeter group]] $C_{443}$ is given by a [[group presentation]] with 12 generators (represented by the vertices) of order $2$ (so 12 relators of the form $x^2 = 1$), with a relation $(x y)^3 = 1$ if $x, y$ are adjacent vertices (so 11 relators, one for each edge), and $x y = y x$ if $x, y$ are non-adjacent (55 more relators). This Coxeter group (12 generators, 78 relators) is infinite, but by modding out by another strange `spider' relator \begin{displaymath} (a b_1 c_1 a b_2 c_2 a b_3 c_3)^{10} = 1 \end{displaymath} the resulting quotient $N$ turns out to be a [[finite group]]. Here $a$ is the central vertex of valence $3$, $b_1, c_1$ are on an arm of length $4$ with $b_1$ adjacent to $a$ and $c_1 \neq a$ adjacent to $b_1$; similarly for $b_2, c_2$ on the other arm of length $4$, and for $b_3, c_3$ on the arm of length $3$. See \href{http://www.maths.qmul.ac.uk/~jnb/web/Pres/Mnst.html}{here} if this is not clear. It turns out that $N$ has a [[center]] $C$ of order $2$, and the Monster $M$ is the quotient, i.e. the indicated term in the exact sequence \begin{displaymath} 1 \to C \to N \to M \to 1. \end{displaymath} This implicitly describes the Monster in terms of 12 generators and 80 relators. Such ``$Y$-group'' presentations (Coxeter group based on a similar $Y$-diagram, modulo a spider relation) are linked to a number of finite simple group constructions, the most famous of which is perhaps $Y_{555}$ which is a presentation of the ``Bimonster'' (the [[wreath product]] of the Monster with $\mathbb{Z}/2$). See \hyperlink{Iv}{Ivanov} for a general description of these. The presentation of the Monster given above was established in \hyperlink{Iv2}{Ivanov2}. \hypertarget{ViaAutomorphisms}{}\subsubsection*{{Via automorphisms of a super vertex operator algebra}}\label{ViaAutomorphisms} There is a [[super vertex operator algebra]], the [[Monster vertex operator algebra]], whose [[automorphism group|group of]] of [[automorphisms of a VOA]] is the [[monster group]]. (\hyperlink{FrenkelLepowskiMeurman89}{Frenkel-Lepowski-Meurman 89}, \hyperlink{GriessLam11}{Griess-Lam 11}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Moonshine]], \item [[Monster vertex algebra]] \item [[Mathieu group]], [[Mathieu moonshine]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \href{http://mathoverflow.net/users/39521/adam-p-goucher}{Adam P. Goucher}, \emph{Presentation of the Monster Group}, (\href{http://mathoverflow.net/q/142216}{MO comment 2013-09-15}) \item Alexander Ivanov, \emph{Y-groups via transitive extension}, Journal of Algebra, Volume 218, Issue 2 (August 15, 1999), 412--435. (\href{http://www.sciencedirect.com/science/article/pii/S0021869399978821}{web}) \item A. A. Ivanov, \emph{Constructing the Monster via its Y-presentation}, in Combinatorics, Paul Erds is Eighty, Bolyai Society Mathematical Studies, Vol. 1 (1993), 253-270. \item [[Igor Frenkel]], [[James Lepowsky]], Arne Meurman, \emph{Vertex operator algebras and the monster}, Pure and Applied Mathematics \textbf{134}, Academic Press, New York 1998. liv+508 pp. \href{http://www.ams.org/mathscinet-getitem?mr=996026}{MR0996026} \item [[Robert Griess]] Jr., Ching Hung Lam, \emph{A new existence proof of the Monster by VOA theory} (\href{https://arxiv.org/abs/1103.1414}{arXiv:1103.1414}) \item [[Andre Henriques]], \emph{\href{http://mathoverflow.net/questions/69222/h4-of-the-monster}{$H^4$ of the monster}} \end{itemize} [[!redirects Monster]] [[!redirects monster group]] [[!redirects Monster simple group]] \end{document}