\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Moore closure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{moore_closures}{}\section*{{Moore closures}}\label{moore_closures} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{InTermsOfClosureCondition}{In terms of closure condition}\dotfill \pageref*{InTermsOfClosureCondition} \linebreak \noindent\hyperlink{InTermsOfClosureOperators}{In terms of closure operators}\dotfill \pageref*{InTermsOfClosureOperators} \linebreak \noindent\hyperlink{InTermsOfMonads}{In terms of monads}\dotfill \pageref*{InTermsOfMonads} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{generalisations}{Generalisations}\dotfill \pageref*{generalisations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{Moore closure} is a very general idea of what it can mean for a [[set]] to be \emph{closed} under some condition. It includes, as special cases, the operation of [[closed subspace|closure]] in a [[topological space]], many examples of generation of structures from [[base|bases]] and even [[subbase|subbases]], and generating [[subalgebras]] from subsets of an algebra. Secretly, it is the same thing as the collection of subsets preserved by some [[monad]] on a [[power set]] (the subset of ``[[modal types]]''). In fact it is a special case of the notion of [[closure operator]] or [[modality]] in [[logic]]/[[type theory]], namely the special case where the ambient [[category]]/[[hyperdoctrine]] is the [[topos]] [[Set]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} We give two equivalent definitions. The first one \begin{itemize}% \item \hyperlink{InTermsOfClosureCondition}{In terms of closure condition} \end{itemize} gives the explicit condition for a [[subset]] of a [[power set]] to qualify as a Moore closure, the second \begin{itemize}% \item \hyperlink{InTermsOfClosureOperators}{In terms of closure operators} \end{itemize} characterizes Moore closures as the collections of [[modal types]] of suitable [[closure operators]]. More abstractly, this characterizes Moore closures \begin{itemize}% \item \hyperlink{InTermsOfMonads}{In terms of monads} \end{itemize} on the [[subobject lattice]] of the given set. \hypertarget{InTermsOfClosureCondition}{}\subsubsection*{{In terms of closure condition}}\label{InTermsOfClosureCondition} \begin{defn} \label{}\hypertarget{}{} Let $X$ be a [[set]], and let $\mathcal{C} \subset P X$ be a collection of [[subsets]] of $X$. Then $\mathcal{C}$ is a \textbf{Moore collection} if every [[intersection]] of members of $\mathcal{C}$ belongs to $\mathcal{C}$. That is, given a family $(A_i)_i$ of sets in $X$, \begin{displaymath} \forall i,\; A_i \in \mathcal{C} \;\Rightarrow\; \bigcap_i A_i \in \mathcal{C} . \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} Given any collection $\mathcal{B}$ whatsoever of subsets of $X$, the Moore collection \textbf{generated} by $\mathcal{B}$ is the collection of all intersections of members of $\mathcal{B}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} This is indeed a Moore collection, and it equals $\mathcal{B}$ if and only if $\mathcal{B}$ is a Moore collection. \end{remark} \hypertarget{InTermsOfClosureOperators}{}\subsubsection*{{In terms of closure operators}}\label{InTermsOfClosureOperators} \begin{defn} \label{ClosureOperator}\hypertarget{ClosureOperator}{} Again let $X$ be a set, and now let $Cl$ be an operation on subsets of $X$. Then $Cl$ is a \textbf{closure operation} if $Cl$ is monotone, isotone, and idempotent. That is, \begin{enumerate}% \item $A \subseteq B \;\Rightarrow\; Cl(A) \subseteq Cl(B)$, \item $A \subseteq Cl(A)$, and \item $Cl(Cl(A)) \subseteq Cl(A)$ (the reverse inclusion follows from the previous two properties). \end{enumerate} \end{defn} \begin{prop} \label{}\hypertarget{}{} If $Cl$ is a closure operation, then let $\mathcal{C}$ be the collection of sets that equal their own closures (the ``[[modal types]]'' or ``[[local objects]]''). Then $\mathcal{C}$ is a Moore collection. Conversely, if $\mathcal{C}$ is a Moore collection, then let $Cl(A)$ be the intersection of all closed sets that contain $A$. Then $Cl$ is a closure operator. Furthermore, the two maps above, from closure operators to Moore collections and vice versa, are inverses. \end{prop} \hypertarget{InTermsOfMonads}{}\subsubsection*{{In terms of monads}}\label{InTermsOfMonads} Moore closures on $X$ are precisely [[monads]] on the [[subobject lattice]] $\mathcal{P}X$. The property (1) of a closure operator, def. \ref{ClosureOperator} ,corresponds the action of the monad on morphisms, while (2,3) are the [[unit of an adjunction|unit]] and multiplication of the monad. (The rest of the requirements of a monad are trivial in a [[poset]], since they state the equality of various morphisms with common source and target.) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} What are examples? Better to ask what \emph{isn't} an example! (Answer: preclosure in a [[pretopological space]], even though some authors call this `closure'.) Of course, the [[closed subsets]] in a [[topological space]] form a Moore collection; then the closure of a set $A$ is its closure in the usual sense. In fact, a topological space can be \emph{defined} as a set equipped with a Moore closure with either of these additional properties (which are equivalent): \begin{itemize}% \item $Cl(\empty) = \empty$ and $Cl(A \cup B) = Cl(A) \cup Cl(B)$. \item $\empty$ is closed, and so is $A \cup B$ if $A$ and $B$ are closed. \end{itemize} (However, these properties may fail in [[constructive mathematics]]; in fact, a topology cannot be constructively recovered from its closure operation.) Here are some algebraic examples: \begin{itemize}% \item The [[subgroup]]s of a [[group]] $G$ form a Moore collection; the closure of a subset $B$ of $G$ is the subgroup generated by $B$. \item The subrings of a [[ring]] $R$ form a Moore collection; the closure of a subset $B$ of $R$ is the subring generated by $B$. \item The subspaces of a [[vector space]] $V$ form a Moore collection; the closure of a subset $B$ of $V$ is the subspace spanned by $B$. \item OK, you get the idea. This applies to any [[algebraic theory]]. For a [[Lawvere theory|finitary algebraic theory]], the lattice of closed elements is an [[algebraic lattice]]. \end{itemize} But also: \begin{itemize}% \item The [[normal subgroup]]s of $G$ form a Moore collection; the closure of $B$ is the normal subgroup generated by $B$. \item The [[ideal]]s of a ring $R$ form a Moore collection; the closure of $B$ is the ideal generated by $B$. \item The (topologically) closed subspaces of a [[Hilbert space]] $H$ form a Moore collection; the closure of $B$ is the closed subspace generated by $B$. \item And many further examples. \end{itemize} Here are some examples on [[power set]]s: \begin{itemize}% \item The topologies on $X$ form a Moore collection on $\mathcal{P}X$; the closure of a subset $\mathcal{B}$ of $\mathcal{P}X$ is the topology generated by $\mathcal{B}$ as a [[subbase]]. \item The [[filter]]s on $X$ form a Moore collection on $\mathcal{P}X$; the closure of $\mathcal{B}$ is the filter generated by $\mathcal{B}$ as a [[subbase]]. (The \emph{proper} filters on $X$ do \emph{not} form a Moore collection; not every $\mathcal{B}$ generates a proper filter.) \item The $\sigma$-[[sigma-algebra|algebras]] on $X$ form a Moore collection on $\mathcal{P}X$; the closure of $\mathcal{B}$ is the $\sigma$-algebra generated by $\mathcal{B}$. (This is the `abstract nonsense' way to generate a $\sigma$-algebra; else you have to do transfinite induction on countable [[ordinal number|ordinals]].) \item And so on. \end{itemize} Topping off these, the Moore collections on $X$ form a Moore collection on $\mathcal{P}X$; the closure of $\mathcal{B}$ is the Moore collection generated by $\mathcal{B}$ as described in the definitions. See also at \emph{[[matroid]]}. \hypertarget{generalisations}{}\subsection*{{Generalisations}}\label{generalisations} The definition of Moore collection really makes sense in any [[inflattice]]; even better, the definition of closure operator makes sense in any [[partial order|poset]]. This context is the generic meaning of [[closure operator]]; here are some examples: \begin{itemize}% \item Instead of $\mathcal{P}X$, work in the [[opposite category|opposite poset]] $\mathcal{P}^{op}X$. Then the open sets in a [[topological space]] $X$ form a Moore collection whose closure operator is the usual interior operation. Now we can define a topological space as a set equipped with a Moore closure operator on $\mathcal{P}^{op}X$ that preserves [[join]]s (which here are [[intersection]]s); this definition is even valid constructively. \item Let $f \dashv g$ be a [[Galois connection]] between [[partial order|posets]] $A$ and $B$. Call an element of $A$ \emph{normal} if $g(f(a)) \leq a$ (the reverse is always true). Then $g \circ f$ is a closure operator. This generalises the case of the normal subgroups of $G$ when $G$ is the [[Galois group]] of an extension of [[field]]s. \end{itemize} Since Galois connections are simply [[adjunction]]s between posets, the concept of Moore closure cries out for [[categorification]]. And in fact, the answer is well known in category theory: it is a [[monad]]. \hypertarget{references}{}\subsection*{{References}}\label{references} Section 4.1--4.12 in \begin{itemize}% \item Erich Schechter, \emph{[[Handbook of Analysis and its Foundations]]} \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Closure_operator}{Closure operator}} \end{itemize} [[!redirects Moore closure]] [[!redirects Moore closures]] [[!redirects Moore clsoure]] [[!redirects Moore collection]] [[!redirects Moore collections]] \end{document}