\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{Morse theory} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{sketch_of_a_trivial_application}{Sketch of a trivial application}\dotfill \pageref*{sketch_of_a_trivial_application} \linebreak \noindent\hyperlink{slightly_lesstrivial_example}{Slightly less-trivial example}\dotfill \pageref*{slightly_lesstrivial_example} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{morse_complex_and_homology}{[[Morse complex]] and homology}\dotfill \pageref*{morse_complex_and_homology} \linebreak \noindent\hyperlink{relation_to_supersymmetric_quantum_mechanics}{Relation to supersymmetric quantum mechanics}\dotfill \pageref*{relation_to_supersymmetric_quantum_mechanics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Morse theory} is the method of studying the [[topology]] of a [[smooth manifold]] $M$ by the study of [[Morse functions]] $M\to\mathbb{R}$ and their associated [[gradient flows]]. Classical Morse theory centered around simple statements like Morse inequalities, concerning just the [[Betti number]]s. It is useful not only for studying manifolds, but also for studying infinite CW-type spaces \emph{homotopically filtered in manifolds}, as by Milnor and Bott (especially \emph{The stable homotopy of the classical groups}) for spaces of paths in a smooth manifold. Novikov--Morse theory is a variant using [[multivalued functions]]. There is also a [[discrete Morse theory]] for combinatorial cell complexes. There are some infinite-dimensional generalizations like Floer instanton homology for 3-dimensional manifolds and also the Hamiltonian variant of [[Floer homology]] (and cohomology) for (finite dimensional) [[symplectic manifolds]]. Especially well studied is the case of the [[cotangent bundle]] of a differentiable manifold with its standard symplectic structure; this is sometimes called Floer--Oh homology. Floer homology has been partly motivated by Arnold's conjecture on periodic trajectories in [[classical mechanics]]. The symplectic variant of Floer cohomology is related to [[quantum cohomology]]. Founders of Morse theory were [[Marston Morse]], [[Raoul Bott]] and [[Albert Schwarz]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} On a smooth manifold $M$, a [[smooth map|smooth]] function $\varphi: M \to \mathbb{R}$ is said to be \emph{Morse} (or \emph{a Morse function}) if \begin{itemize}% \item the zero set of $d \varphi$ consists of isolated points, and \item the [[Hessian]] of $\varphi$ at these points is nondegenerate. \end{itemize} The Morse functions on $M$ are dense in most reasonable topologies you could put on $C^{\infty}(M)$. A further condition which is useful in case $M$ is not compact is \begin{itemize}% \item if the (closed!) preimage of $( -\infty , \lambda ]$ under $\varphi$ is compact for all $\lambda$, then $\varphi$ is said to be \emph{coercive}, whether or not it is Morse. \end{itemize} Together with a (smooth) Riemann structure $g =\langle \cdot,\bullet\rangle$, any real function $\varphi$ on $M$ defines a [[flow]] on $M$ by the equation \begin{displaymath} - \langle \dot x, Y_x \rangle = Y_x \varphi = d\varphi(Y_x). \end{displaymath} The Morse functions are notable in that the flows they define have isolated fixed-points with trivially linearizable dynamics, and no other stable cyles. When $\varphi$ is Morse and coercive, the unstable manifolds of the fixpoints can be arranged into a [[CW complex]] $C_{unstable} (\varphi,g)$, canonically homeomorphic to $M$. When $M$ is compact, $\varphi$ and $-\varphi$ are automatically both coercive, and $-\varphi$ induces a [[Poincare duality|dual]] CW complexe $C_{stable} (\varphi,g)$. Concretely, \ldots{} . \hypertarget{sketch_of_a_trivial_application}{}\subsubsection*{{Sketch of a trivial application}}\label{sketch_of_a_trivial_application} Let $X \to Y$ be a surjective submersion of compact smooth manifolds, and assume $Y$ is connected. By suitable implicit function theorems, the preimage of any parametrized nonstationary curve $\gamma :(0,1)\to Y$ is a submanifold of $X$, and furthermore the parameter is a Morse function on this submanifold, having \emph{no critical points}. (It is \emph{not} coercive). By a very little more analysis, the Morse gradient flow is therefore a smooth family of homotopy equivalences. A trivial adjustment of the Riemann structure further allows that the Morse flow sends fibers to fibers diffeomorphically, so that in fact the fibers over neighboring points of $Y$ are diffeomorphic. But since $Y$ is connected, this implies that \emph{all} the fibers are diffeomorphic, so that $X\to Y$ is a smooth fiber bundle over $Y$. \hypertarget{slightly_lesstrivial_example}{}\subsubsection*{{Slightly less-trivial example}}\label{slightly_lesstrivial_example} The restriction to the [[unit sphere]] in $\mathbb{R}^{n+1}$ of a generic quadratic form is Morse with $2(n+1)$ critical points --- two of each [[bilinear form|index]]; and furthermore this restriction clearly descends to $\mathbb{RP}^n$ as a Morse function with $n+1$ critical points, one of each index. It can be shown that this is indeed the minimal collection of critical points supported by real projective space. \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Raoul Bott]], \emph{\href{http://archive.numdam.org/article/PMIHES_1988__68__99_0.pdf}{Morse theory indomitable}}, \emph{Publications Math\'e{}matiques de L'IH\'E{}S}, 1988, Volume 68, Number 1, Pages 99-114. \item [[Raoul Bott]], \href{http://www.ams.org/journals/bull/1982-07-02/S0273-0979-1982-15038-8/}{Lectures on Morse Theory, Old and New}, Bull. Amer. Math. Soc. 7 (1982), 331-358. \item [[Raoul Bott]], The stable homotopy of the classical groups. Ann. of Math. (2) 70 1959 313--337. \item [[Daniel Freed]], \href{http://www.ams.org/journals/bull/2011-48-04/S0273-0979-2011-01349-0/}{Commentary} on ``Lectures on Morse Theory, Old and New'', Bull. Amer. Math. Soc., 48(4), October 2011, 517--523 \item [[Marco Gualtieri]], \emph{\href{http://www.math.toronto.edu/mgualt/Morse%20Theory/Morse_2009.html}{Course page}}, lecture notes and links. \item [[Martin Guest]], \href{http://arxiv.org/abs/math/0104155}{Morse theory in the 1990s}. \item [[Loring Tu]], \emph{Morse theory} \href{http://www.math.harvard.edu/history/bott/bottbio/node9.html}{node} on online bio of R. Bott \item [[M. M. Postnikov]], --- .: , 1971 \end{itemize} \hypertarget{morse_complex_and_homology}{}\subsubsection*{{[[Morse complex]] and homology}}\label{morse_complex_and_homology} \begin{itemize}% \item [[John Milnor]], \emph{Lectures on the h-cobordism theorem}, Notes by L. Siebenmann \& J. Sondow, Princeton Univ. Press, 1965. \item Matthias Schwarz, \emph{Morse homology}, Progress in Mathematics \textbf{111}, 1993 \end{itemize} There is also a variant due Barannikov, and in more abstract form Viterbo: \begin{itemize}% \item S. Barannikov, \emph{The framed Morse complex and its invariants}, Advances in Soviet Math. 21 (1994), 93-115. \item Fran\c{c}ois Laudenbach, \emph{On an article by S. A. Barannikov}, \href{http://arxiv.org/abs/1509.03490}{arxiv/1509.03490} \end{itemize} \hypertarget{relation_to_supersymmetric_quantum_mechanics}{}\subsubsection*{{Relation to supersymmetric quantum mechanics}}\label{relation_to_supersymmetric_quantum_mechanics} The relation to [[supersymmetric quantum mechanics]] is due to \begin{itemize}% \item [[Edward Witten]], \emph{Supersymmetry and morse theory} (\href{http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.jdg/1214437492}{Euclid}) \end{itemize} Reviews include \begin{itemize}% \item [[Gábor Pete]], section 2 of \emph{Morse theory}, lecture notes 1999-2001 (\href{http://www.math.bme.hu/~gabor/morse.pdf}{pdf}) \end{itemize} \end{document}